

Android Database
Programming

Exploit the power of data-centric and data-driven
Android applications with this practical tutorial

Jason Wei

BIRMINGHAM - MUMBAI

Android Database Programming

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2012

Production Reference: 1230512

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-812-3

www.packtpub.com

Cover Image by Jason Wei (jwei512@gmail.com)

Credits

Author
Jason Wei

Reviewers
Joseph Lau

Prashant Thakkar (Pandhi)

Acquisition Editor
Kartikey Pandey

Lead Technical Editor
Azharuddin Sheikh

Technical Editors
Ankita Shashi

Manmeet Singh Vasir

Project Coordinator
Joel Goveya

Proofreader
Sandra Hopper

Indexer
Rekha Nair

Graphics
Manu Joseph

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Author

Jason Wei graduated from Stanford University in 2011 with a B.S. in Mathematical
Computational Science, a minor in Statistics, and an M.S. in Management Science
and Engineering with a concentration on Machine Learning. He spent his first two
years in college with startups in Silicon Valley, and it was at his second startup
(BillShrink, Inc) that he was introduced to Android.

Since then he has developed a handful of applications ranging from silly screen
prank applications to serious financial pricing and modeling tools. He also enjoys
working with APIs and competing in application development contests – winning
a number of contests hosted by companies like Google, MyGengo, IndexTank,
amongst others. In addition to developing applications, Jason enjoys writing
Android tutorials and sharing his own development experiences on his blog
(thinkandroid.wordpress.com), and it was through his blog that he was first
invited to be a technical reviewer for the book Learning Android Game Programming.

Jason is currently working as a quantitative trader in New York.

About the Reviewers

Joseph Lau is currently a graduate student at Stanford University, studying
towards his M.S. in Computer Science. During his summers, he's interned at
LinkedIn and Google in various technical positions. Android programming is a
hobby of his, and he has written several Android applications. He believes mobile
applications are a key component of technical innovation in the 21st century and
thinks it's a great time to pick up Android programming if you haven't yet.

Prashant Thakkar (Pandhi) is a Technical Lead with more than seven years of IT
experience. His strengths are Java, J2EE with frameworks like Struts, Hibernate, and
related open source frameworks. Prashant has been working on Android for more
than two years and has delivered mission-critical Enterprise Mobile Applications.
His interests also include Google App Engine for delivering applications in the
cloud. Prashant writes about his technical experiments on his blogs at http://
ppandhi.wordpress.com and http://androidpartaker.wordpress.com

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content
•	 On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: Storing Data on Android 7

Using SharedPreferences 8
Common use cases for SharedPreferences 10

Checking if it's the user's first time visit to your application 10
Checking when the application last updated itself 11
Remembering what the user's login username was 12
Remembering an application's state 12
Caching a user's location 12

Internal storage methods 13
External storage methods 16
SQLite databases 20
Summary 25

Chapter 2: Using a SQLite Database 27
Creating advanced SQLite schemas 27
Wrappers for your SQLite database 30
Debugging your SQLite database 40
Summary 42

Chapter 3: SQLite Queries 43
Methods for building SQLite queries 43
SELECT statements 45
WHERE filters and SQL operators 49
DISTINCT and LIMIT clauses 52
ORDER BY and GROUP BY clauses 55
HAVING filters and Aggregate functions 59
SQL vs. Java performance comparisons 66
Summary 71

Table of Contents

[ii]

Chapter 4: Using Content Providers 73
ContentProvider 73

Implementing the query method 79
Implementing the delete and update methods 82
Implementing the insert and getType methods 86
Interacting with a ContentProvider 90

Practical use cases 92
Summary 94

Chapter 5: Querying the Contacts Table 95
Structure of the Contacts content provider 95
Querying for Contacts 98
Modifying Contacts 102
Setting permissions 107
Summary 108

Chapter 6: Binding to the UI 109
SimpleCursorAdapters and ListViews 109
Custom CursorAdapters 114
BaseAdapters and Custom BaseAdapters 117
Handling list interactions 123
Comparing CursorAdapters and BaseAdapters 125
Summary 126

Chapter 7: Android Databases in Practice 129
Local database use cases 130
Databases as caches 134
Typical application design 137
Summary 139

Chapter 8: Exploring External Databases 141
Different external databases 141
Google App Engine and JDO databases 143
GAE: an example with video games 145
The PersistenceManager and Queries 148
Summary 156

Chapter 9: Collecting and Storing Data 157
Methods for collecting data 157
A primer on web scraping 159
Extending HTTP servlets for GET/POST methods 170
Scheduling CRON jobs 174
Summary 176

Table of Contents

[iii]

Chapter 10: Bringing it Together 177
Implementing HTTP GET requests 177
Back to Android: parsing responses 181
Final steps: binding to the UI (again) 187
Summary 192

Index 193

Preface
Today, we live in an increasingly data-centric and data-driven world. We live in
a world where companies like Amazon track every item we view and every item
we purchase so as to recommend similar products to us. We live in a world where
companies like Google store every search query thrown at them so as to recommend
better search queries in the future. We live in a world where social media sites like
Facebook remember every event and every thought we share with our friends so
as to better learn about each of their hundreds of millions of users. We live in an
increasingly data-centric world, and so it's imperative that we develop applications
with a data-centric perspective.

Take a look around you—the growth of mobile devices, such as smart phones and
tablets, has been explosive over the last couple of years. This book is meant to be an
exploration of data and Android with a quick dive into the various methods the folks
over at Google have built into the Android OS. This book not only strives to show
you all the different data storage methods available, but also strives to illuminate the
strengths and weaknesses of each method. By the end of this book, my goal is for you
to be able to craft an efficient, well-designed, and scalable data-centric application.

What this book covers
Chapter 1, Storing Data on Android, focuses on all the different local data storage
methods available on Android. It provides ample code examples of each storage
method, as well as a comparison of the strengths and weaknesses of each.

Chapter 2, Using a SQLite Database, takes a deeper dive into the most complex and
most commonly used form of local data storage—the SQLite database—by walking
you through the implementation of a custom SQLite database.

Preface

[2]

Chapter 3, SQLite Queries, is designed to be a cursory overview of the SQL query
language. It teaches the reader how to construct powerful database queries, which
can then be used with any SQLite database.

Chapter 4, Using Content Providers, expands upon the previous SQLite database
chapters by showing the reader how to expose his/her database to the entire
Android OS through the use of content providers. It walks the reader through a
full implementation of a content provider, and finishes with a brief discussion on
benefits of making your data public.

Chapter 5, Querying the Contacts Table, is devoted to exploring the most widely
used content provider provided by the Android OS—the Contacts content
provider. It explores the structure of the Contacts tables, and provides examples
of common queries.

Chapter 6, Binding to the UI, talks about ways the user can bind their data to the user
interface. Because of how data is typically displayed as lists, this chapter walks
through the implementations of two types of list adapters.

Chapter 7, Android Databases in Practice, tries to step away from the programming
and focus on higher-level design concepts. It talks about ways in which all the local
storage methods discussed up to this point can be used, and also highlights the
downfalls of such local methods—opening the door for the next couple of chapters,
where we focus on external data stores.

Chapter 8, Exploring External Databases, introduces the notion of using an external
database and lists some common external data stores that are available to the
reader. The chapter finishes with an example of how to set up a Google App
Engine data store.

Chapter 9, Collecting and Storing Data, extends the development of the previous
chapter by talking about ways in which your application can go and collect data,
which can then be inserted into your new external database. The methods for
collecting data include using available APIs, as well as writing custom web scrapers.

Chapter 10, Bringing it Together, finishes the application we started in the previous
two chapters by showing the reader how to first create HTTP servlets, and second
make HTTP requests from the mobile application to these HTTP servlets. This
chapter serves as the culmination of the book, and shows the reader how to connect
their mobile application with their external database, and ultimately parse and
display the HTTP response as a list.

Preface

[3]

What you need for this book
The requirements for this book include a working knowledge of the Android OS,
a programming IDE capable of creating both Android and Google App Engine
projects (that is Eclipse), as well as a stable internet connection capable of making
basic web requests.

Who this book is for
This book targets developers who have some experience with databases and other
backend design concepts, but who may want to see these concepts applied to mobile
applications. Developers who are experienced with mobile applications and/or
the Android platform, but who may not be as familiar with backend systems and
designing/implementing database schemas, will also find this book useful.

Even for those who are already experienced in Android programming and database
implementation, this book may serve to further solidify concepts and present a
broader scope of data storage methods on Android.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "It then converts the string we want to
write to byte form and passes it into the output stream's write() method."

A block of code is set as follows:

Set<String> values = new HashSet<String>();
values.add("Hello");
values.add("World");
Editor e = sp.edit();
e.putStringSet("strSetKey", values);
e.commit();
Set<String> ret = sp.getStringSet(values, new HashSet<String>());
for(String r : ret) {
 Log.i("SharedPreferencesExample", "Retrieved vals: " + r);
}

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<uses-sdk android:minSdkVersion="5" />
<uses-permission android:name="android.permission.READ_CONTACTS"/>
<uses-permission android:name="android.permission.WRITE_CONTACTS"/>

Any command-line input or output is written as follows:

adb –s emulator-xxxx shell

New terms and important words are shown in bold.

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Preface

[5]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the
text or the code—we would be grateful if you would report this to us. By doing
so, you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

Storing Data on Android
Today, we live in an increasingly data-centric and data-driven world. We live in
a world where companies like Amazon track every item we view and every item
we purchase so as to recommend similar products to us. We live in a world where
companies like Google store every search query thrown at them so as to recommend
better search queries in the future. We live in a world where social media sites like
Facebook remember every event and every thought we share with our friends so
as to better learn about each of their hundreds of millions of users. We live in an
increasingly data-centric world, and so it's imperative that we develop applications
with a data-centric perspective.

Now, why Android you might ask? Or more generally, why mobile applications?
Take a look around you — the growth of mobile devices, such as smart phones and
tablets, has been explosive over the last couple of years. Furthermore, mobile devices
implicitly give us another layer of data that we previously didn't have with desktop
applications. As you carry your smart phone or tablet around with you, it knows
your location, it knows where you're checking in and what you're doing; in short, it
knows much more about you than you're probably aware of.

Keeping these two points in mind, we begin our exploration of data and Android
with a quick dive into the various methods the folks over at Google have built into
the Android OS. This book assumes the reader has had some experience with the
Android OS, as we'll dive right into the code. Now, not only is it important to know
all the different data storage methods available to you, but equally important is to
understand the strengths and weaknesses of each method, so that you can craft an
efficient, well-designed, and scalable application.

Storing Data on Android

[8]

Using SharedPreferences
SharedPreferences is the most simple, quick, and efficient way of storing local data
in your Android application. It's a framework that essentially allows you to store
and associate various key-value pairs with your application (think of this as a map
that comes with your application, which you can tap into at any time), and because
each application is associated with its own SharedPreferences class, the data that
gets stored and committed persists across all user sessions. However, because of its
simple and efficient nature, SharedPreferences only allows you to save primitive
data types (that is, booleans, floats, longs, ints, and strings), so keep this in mind
when deciding what to store as a shared preference.

Let's look at an example of how you would access and use your application's
SharedPreferences class:

public class SharedPreferencesExample extends Activity {
 private static final String MY_DB = "my_db";
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 // INSTANTIATE SHARED PREFERENCES CLASS
 SharedPreferences sp = getSharedPreferences(MY_DB,
 Context.MODE_PRIVATE);
 // LOAD THE EDITOR – REMEMBER TO COMMIT CHANGES!
 Editor e = sp.edit();
 e.putString("strKey", "Hello World");
 e.putBoolean("boolKey", true);
 e.commit();
 String stringValue = sp.getString("strKey", "error");
 boolean booleanValue = sp.getBoolean("boolKey", false);
 Log.i("LOG_TAG", "String value: " + stringValue);
 Log.i("LOG_TAG ", "Boolean value: " + booleanValue);
 }
}

Let's walk through what's going on in this little code snippet. First we start
an Activity and in the onCreate() method, we make a request to retrieve a
SharedPreferences class. The arguments for the getSharedPreferences()
method are:

getSharedPreferences(String mapName, int mapMode)

Chapter 1

[9]

Here the first argument simply specifies which shared preference mapping you
want (each application can own several separate shared preference mappings, and
so, just like you would specify the table name in a database, you must specify which
mapping you want to retrieve). The second argument is a little more complex — in
the example above, we pass in MODE_PRIVATE as the argument and this argument
simply specifies the visibility of the shared preference instance you are retrieving
(in this case the visibility is set to private, so that only your application can access
the mappings contents). Other modes include:

•	 MODE_WORLD_READABLE: Makes the visibility of your map accessible by other
applications, though contents can only be read

•	 MODE_WORD_WRITEABLE: Makes the visibility of your map accessible by other
applications for both reading and writing

•	 MODE_MULTI_PROCESS: This mode, available since API Level 11, allows you
to modify your map by multiple processes which may be writing to the same
shared preference instance

Now, once we have our shared preference object, we can immediately start
retrieving contents by its various get() methods — for instance, the getString()
and getBoolean() methods we saw earlier. These get() methods will typically take
two parameters: the first being the key, and the second being the default value if the
given key is not found. Taking the previous example, we have:

String stringValue = sp.getString("strKey", "error");
boolean booleanValue = sp.getBoolean("boolKey", false);

And so, in the first case, we're trying to retrieve the string value associated with the
key strKey, and defaulting to the string error if no such key is found. Likewise,
in the second case, we're trying to retrieve a boolean value associated with the key
boolKey, and defaulting to the boolean false if no such key is found.

However, if you want to edit contents or add new content, then you'll have to retrieve
the Editor object that each shared preference instance contains. This Editor object
contains all of the put() methods which allow you to pass a key along with its
associated value (just like you would for a standard Map object) — the only caveat is
that after you add or update the content of your shared preference, you need to call
the Editor object's commit() method to save down those changes. Furthermore, again,
just like a standard Map object, the Editor class also contains remove() and clear()
methods for you to freely manipulate the contents of your shared preference.

Storing Data on Android

[10]

One last thing to note before we move on to typical use cases of SharedPreferences
is that if you decide to set the visibility of your shared preference instance to
MODE_WORLD_WRITEABLE, then you are potentially exposing yourself to various
security breaches by malicious external applications. As a result, in practice, this
mode is not recommended. However, the desire to share information locally between
two applications is still one that many developers face, and so a method for doing
so was developed that simply involves setting an android:sharedUserId in your
application's manifest files.

How this works is that each application, when signed and exported, is given an
auto-generated application ID. However, if you explicitly set this ID in the
application's manifest file, then, assuming two applications are signed with the
same key, they will be able to freely access each other's data without having to
expose their data to the rest of the applications on a user's phone. In other words, by
setting the same ID for two applications, those two and only those two applications
will be able to access each other's data.

Common use cases for SharedPreferences
Now that we know how to instantiate and edit a shared preference object, it's
important to think about some typical use cases for this type of data storage.
And so, following are a couple of examples, illustrating what kinds of small,
primitive key-value data pairs applications tend to like to save.

Checking if it's the user's first time visit to
your application
For many applications, if this is the user's first visit, then they will want to display
some kind of instructions/tutorials activity or a splash screen activity:

public class SharedPreferencesExample2 extends Activity {
 private static final String MY_DB = "my_db";
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 SharedPreferences sp = getSharedPreferences(MY_DB,
 Context.MODE_PRIVATE);
 /**
 * CHECK IF THIS IS USER'S FIRST VISIT
 */
 boolean hasVisited = sp.getBoolean("hasVisited",
 false);

Chapter 1

[11]

 if (!hasVisited) {
 // ...
 // SHOW SPLASH ACTIVITY, LOGIN ACTIVITY, ETC
 // ...
 // DON'T FORGET TO COMMIT THE CHANGE!
 Editor e = sp.edit();
 e.putBoolean("hasVisited", true);
 e.commit();
 }
 }
}

Checking when the application last updated itself
Many applications will have some kind of caching, or syncing, feature built-in, which
will require regular updating. By saving the last update time, we can quickly check
to see how much time has elapsed, and decide whether or not an update/sync needs
to occur:

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

/**
* CHECK LAST UPDATE TIME
*/
long lastUpdateTime = sp.getLong("lastUpdateKey", 0L);
long timeElapsed = System.currentTimeMillis() -
lastUpdateTime;
// YOUR UPDATE FREQUENCY HERE
final long UPDATE_FREQ = 1000 * 60 * 60 * 24;
if (timeElapsed > UPDATE_FREQ) {
// ...
// PERFORM NECESSARY UPDATES
// ...
}
// STORE LATEST UPDATE TIME
Editor e = sp.edit();
e.putLong("lastUpdateKey", System.currentTimeMillis());
e.commit();

Storing Data on Android

[12]

Remembering what the user's login username was
Many applications will allow the user to remember their username (as well as
other login-oriented fields such as PINs, phone numbers, and so on) and a shared
preference is a great way to store a simple primitive string ID:

/**
* CACHE USER NAME AS STRING
*/
// TYPICALLY YOU WILL HAVE AN EDIT TEXT VIEW
// WHERE THE USER ENTERS THEIR USERNAME
EditText userNameLoginText = (EditText)
findViewById(R.id.login_editText);
String userName =
 userNameLoginText.getText().toString();
Editor e = sp.edit();
e.putString("userNameCache", userName);
e.commit();

Remembering an application's state
For many applications, the functionality of the application will change depending on
the application's state, typically set by the user. Consider a phone ringer application
— if the user specifies that no functionality should occur if the phone is in silent
mode, then this is probably an important state to remember:

/**
* REMEBERING A CERTAIN STATE
*/
boolean isSilentMode = sp.getBoolean("isSilentRinger",
 false);
if (isSilentMode) {
// ...
// TURN OFF APPLICATION
// ...
}

Caching a user's location
Any location-based application will often want to cache the user's last location for a
number of reasons (perhaps the user has turned off GPS, or has a weak signal, and
so on). This can be easily done by converting the latitude and longitude of the user
to floats and then storing those floats in a shared preference instance:

/**
* CACHING A LOCATION

Chapter 1

[13]

*/
// INSTANTIATE LOCATION MANAGER
LocationManager locationManager = (LocationManager)
 this.getSystemService(Context.LOCATION_SERVICE);
// ...
// IGNORE LOCATION LISTENERS FOR NOW
// ...
Location lastKnownLocation =
 locationManager.getLastKnownLocation
 (LocationManager.NETWORK_PROVIDER);
float lat = (float) lastKnownLocation.getLatitude();
float lon = (float) lastKnownLocation.getLongitude();
Editor e = sp.edit();
e.putFloat("latitudeCache", lat);
e.putFloat("longitudeCache", lon);
e.commit();

With the latest version of Android (API Level 11), there is also a new getStringSet()
method which allows you to set and retrieve a set of string objects for a given
associated key. Here's how it looks in action:

Set<String> values = new HashSet<String>();
values.add("Hello");
values.add("World");
Editor e = sp.edit();
e.putStringSet("strSetKey", values);
e.commit();
Set<String> ret = sp.getStringSet(values, new HashSet<String>());
for(String r : ret) {
 Log.i("SharedPreferencesExample", "Retrieved vals: " + r);
}

Use cases for this are plenty — but for now let's move on.

Internal storage methods
Let's begin with internal storage mechanisms on Android. For those with experience
in standard Java programming, this section will come pretty naturally. Internal
storage on Android simply allows you to read and write to files that are associated
with each application's internal memory. These files can only be accessed by
the application and cannot be accessed by other applications or by the user.
Furthermore, when the application is uninstalled, these files are automatically
removed as well.

Storing Data on Android

[14]

The following is a simple example of how to access an application's internal storage:

public class InternalStorageExample extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 // THE NAME OF THE FILE
 String fileName = "my_file.txt";
 // STRING TO BE WRITTEN TO FILE
 String msg = "Hello World.";
 try {
 // CREATE THE FILE AND WRITE
 FileOutputStream fos = openFileOutput(fileName,
 Context.MODE_PRIVATE);
 fos.write(msg.getBytes());
 fos.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Here we simply use the Context class's openFileOutput() method, which takes as
its first argument the name of the file to be created (or overridden) and as its second
argument the visibility of that file (just like with SharedPreferences, you can
control the visibility of your files). It then converts the string we want to write to
byte form and passes it into the output stream's write() method. One thing to
mention though is an additional mode that can be specified with openFileOutput()
and that is:

•	 MODE_APPEND: This mode allows you to open an existing file and append
a string to its existing contents (any other mode and the existing contents
will be deleted)

Furthermore, if you are programming in Eclipse, then you can go to the DDMS
screen and look at your application's internal files (amongst other things):

Chapter 1

[15]

And so we see the text file that we just created. For those developing with the
terminal, the path for this would be /data/data/{your-app-path}/files/
my_file.txt. Now, unfortunately, reading back files is much more verbose
and the code for how you would do that looks like:

public class InternalStorageExample2 extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 // THE NAME OF THE FILE
 String fileName = "my_file.txt";
 try {
 // OPEN FILE INPUT STREAM THIS TIME
 FileInputStream fis = openFileInput(fileName);
 InputStreamReader isr = new InputStreamReader(fis);
 // READ STRING OF UNKNOWN LENGTH
 StringBuilder sb = new StringBuilder();
 char[] inputBuffer = new char[2048];
 int l;
 // FILL BUFFER WITH DATA
 while ((l = isr.read(inputBuffer)) != -1) {

Storing Data on Android

[16]

 sb.append(inputBuffer, 0, l);
 }
 // CONVERT BYTES TO STRING
 String readString = sb.toString();
 Log.i("LOG_TAG", "Read string: " + readString);
 // CAN ALSO DELETE THE FILE
 deleteFile(fileName);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Here we start by opening a file input stream instead and pass it into a stream reader.
This will allow us to call the read() method and read in the data as bytes which we
can then append to a StringBuilder. Once the contents have been read back fully,
we simply return the String from the StringBuilder and voila! At the end, just for
the sake of completeness, the Context class provides you with a simple method for
deleting files saved in the internal storage.

External storage methods
External storage, on the other hand, involves storing data and files to the phone's
external Secure Digital (SD) card. The concept behind internal and external storage
is similar, and so let's begin by laying down the pros and cons of this kind of storage
versus what we saw earlier — that is, SharedPreferences. In a shared preference,
there is much less overhead and so reading/writing to a simple Map object is much
more efficient than reading/writing to a disk. However, because you are limited to
simple primitive values (for the most part; again the most recent version of Android
allows you to save sets of strings), you are essentially trading flexibility for efficiency.
With internal and external storage mechanisms, you can save not only much bigger
chunks of data (that is, entire XML files) but also much more complicated forms of
data (that is, media files, image files, and so on).

Now, how about internal versus external storage? Well the pros and cons of these
two are much more subtle. First, let's consider the amount of storage space (memory).
Though this varies depending on the phone a user owns, the amount of internal
memory can often be quite low, and it is not uncommon for even relatively new
phones to have as low as 512 MB of internal storage. External storage, on the other
hand, depends solely on what SD card the user has in their phone. Typically, if an SD
card is present, then the amount of external storage can be many times greater than
the amount of internal storage (depending on the size of the SD card, this can be as
high as 32 GB of storage).

Chapter 1

[17]

Now, let's consider the access speed for internal versus external storage.
Unfortunately, in this case, nothing conclusive can be drawn as the read and write
speeds are highly dependent on the type of internal flash memory the phone uses,
as well as the classification of the SD card for external storage. And so the last thing
to consider is the accessibility of each type of storage mechanism. Again, for internal
storage, the data is only accessible by your application, and so it is extremely safe
from potentially malicious external applications. The con is that if the application
is uninstalled, then that internal memory is wiped as well. For external storage,
the visibility is inherently world readable and writeable, and so any files saved are
exposed both to external applications as well as to the user. There is no guarantee
then that your files will remain safe and uncorrupted.

Now that we've flushed out some of the differences, let's get back to the code and see
how you can actually access the external SD card with this following example:

public class ExternalStorageExample extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 String fileName = "my_file.txt";
 String msg = "Hello World.";
 boolean externalAvailable = false;
 boolean externalWriteable = false;
 String state = Environment.getExternalStorageState();
 if (state.equals(Environment.MEDIA_MOUNTED)) {
 // HERE MEDIA IS BOTH AVAILABLE AND WRITEABLE
 externalAvailable = true;
 externalWriteable = true;
 } else if
 (state.equals(Environment.MEDIA_MOUNTED_READ_ONLY)) {
 // HERE SD CARD IS AVAILABLE BUT NOT WRITEABLE
 externalAvailable = true;
 } else {
 // HERE FAILURE COULD BE RESULT OF MANY SITUATIONS
 // NO OP
 }
 if (externalAvailable && externalWriteable) {
 // FOR API LEVEL 7 AND BELOW
 // RETRIEVE SD CARD DIRECTORY
 File r = Environment.getExternalStorageDirectory();
 File f = new File(r, fileName);
 try {

Storing Data on Android

[18]

 // NOTE DIFFERENT FROM INTERNAL STORAGE WRITER
 FileWriter fWriter = new FileWriter(f);
 BufferedWriter out = new BufferedWriter(fWriter);
 out.write(msg);
 out.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 } else {
 Log.e("LOG_TAG", "SD CARD UNAVAILABLE");
 }
 }
}

In order to execute the previous code, don't forget to add into your manifest file
the WRITE_EXTERNAL_STORAGE permission. Here, we start by making a call to the
Environment class's getExternalStorageState() method, which allows us to
detect whether an external SD card is actually mounted and writeable. Trying
to read or write to a file without performing these preliminary checks will cause
an error to be thrown.

Once we know that an SD card is mounted and, indeed, writeable, then for those
with API Levels 7 and below, we call getExternalStorageDirectory() to retrieve
the file path to the root of the SD card. At this point, we simply need to create our
new file and instantiate a FileWriter and BufferedWriter and write our string to
the file. One thing to note here is that the method for writing to disk when dealing
with external storage differs from our previous method for writing to disk with
internal storage.

This is actually an important point to note and understand, which is why I place so
much emphasis on these write methods. In the internal storage example, we obtained
a FileOutputStream object by calling the Context class's openFileOutput()
method, which took as its second argument a mode. When passing in MODE_PRIVATE,
what happens behind the scenes is that each time a file is created and written to with
that FileOutStream, that file is encrypted and signed with your application's unique
ID (as mentioned earlier), so that external applications cannot access the contents of
those files. However, remember that when creating and writing to files in external
storage, by default they are created with no security enforcements, so any application
(or user) can both read and write to those files. This is why you can use standard
Java methods (for example, FileWriter) for writing to external SD cards, but not
when writing to internal storage. One last thing to note is that just as you can see the
newly created file in the DDMS perspective in Eclipse, assuming you have an SD
card setup, you can just as easily see the newly created text file in DDMS:

Chapter 1

[19]

So while developing your application, by leveraging this DDMS perspective you can
quickly push, pull, and monitor files that you are writing to disk.

With that said, I'll quickly mention some of the changes in writing to external
storage that were introduced after API Level 8. These changes are actually very
well documented at http://developer.android.com/reference/android/
content/Context.html#getExternalFilesDir(java.lang.String)

But from a high level, in API Level 8 and above, we simply have two new
primary methods:

getExternalFilesDir(String type)
getExternalStoragePublicDirectory(String type)

You'll notice that for each of these methods you can now pass in a type parameter.
These type parameters allow you to specify what kind of file yours is, so that it gets
organized into the right subfolders. In the first method, the external file directory
root that is returned is specific to your application, so that when your application
is uninstalled all of those associated files are deleted from the external SD card as
well. In the second method, the file directory root that is returned is a public one, so
that files stored on these paths will remain persistent even when your application is
uninstalled. Deciding which to use simply depends on the kind of file you are trying
to save — for instance, if it's a media file that gets played in your application, then
the user probably has no use for it if he/she decides to uninstall your application.

http://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)
http://developer.android.com/reference/android/content/Context.html#getExternalFilesDir(java.lang.String)

Storing Data on Android

[20]

However, say your application allows the user to download wallpapers for their
phone: in this case, you might consider saving any image files to a public directory,
so that even if the user uninstalls your application, those files will still be accessible
by the system. The different type parameters that you can specify are:

DIRECTORY_ALARMS
DIRECTORY_DCIM
DIRECTORY_DOWNLOADS
DIRECTORY_MOVIES
DIRECTORY_MUSIC
DIRECTORY_NOTIFICATIONS
DIRECTORY_PICTURES
DIRECTORY_PODCASTS
DIRECTORY_RINGTONES

And so we wrap up our somewhat lengthy discussion on internal and external
storage mechanisms and dive right into the even heftier topic of SQLite databases.

SQLite databases
Last, but not least, by far the most sophisticated and, arguably, the most powerful
method for local storage is with SQLite databases. Each application is equipped with
its own SQLite database, which is accessible by any class in the application, but not
by any outside applications. Before moving on to complex queries or snippets of
code, let me just give a quick summary of what SQLite databases are.

SQL (Structured Query Language) is a programming language designed especially
for managing data in relational databases. Relational databases allow you to submit
insert, delete, update, and get queries, while also allowing you to create and modify
schemas (more simply thought of as tables). SQLite then is simply a scaled-down
version of MySQL, PostgreSQL, and other popular database systems. It is entirely
self-contained and server-less, while still being transactional and still using the
standard SQL language for executing queries. Because of how it's self-contained
and executable, it is extremely efficient, flexible, and accessible by a wide variety
of programming languages across a wide variety of platforms (including our very
own Android platform).

For now, let's simply take a look at how we would instantiate a new SQLite database
schema and create a very simple table with this code snippet:

public class SQLiteHelper extends SQLiteOpenHelper {
 private static final String DATABASE_NAME = "my_database.db";
 // TOGGLE THIS NUMBER FOR UPDATING TABLES AND DATABASE

Chapter 1

[21]

 private static final int DATABASE_VERSION = 1;
 // NAME OF TABLE YOU WISH TO CREATE
 public static final String TABLE_NAME = "my_table";
 // SOME SAMPLE FIELDS
 public static final String UID = "_id";
 public static final String NAME = "name";
 SQLiteHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }
 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL("CREATE TABLE " + TABLE_NAME + " (" + UID + "
 INTEGER PRIMARY KEY AUTOINCREMENT," + NAME
 + " VARCHAR(255));");
 }
 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 Log.w("LOG_TAG", "Upgrading database from version " +
 oldVersion + " to " + newVersion + ",
 which will destroy all old data");
 // KILL PREVIOUS TABLE IF UPGRADED
 db.execSQL("DROP TABLE IF EXISTS " + TABLE_NAME);
 // CREATE NEW INSTANCE OF TABLE
 onCreate(db);
 }
}

Here, the first thing we'll notice is that in order to create a customizable database
schema, we must override the SQLiteOpenHelper class. By overriding it, we can
then override the onCreate() method, which will allow us to dictate the structure
of the table. In our case, you'll notice that we're simply creating a table with two
columns, an ID column and a name column. The query is equivalent to running the
following command in SQL:

CREATE TABLE my_table (_id INTEGER PRIMARY KEY AUTOINCREMENT,
name VARCHAR(255));

You'll also see that the ID column has been designated as a PRIMARY KEY and given
the AUTOINCREMENT property — this is actually recommended for all tables created in
Android and we'll adhere to this standard going forward. Lastly, you'll see that the
name column was declared a string type with maximum character length
of 255 (for longer strings, we can simply type the column as a LONGTEXT type).

Storing Data on Android

[22]

After overriding the onCreate() method, we also override the onUpgrade() method.
This allows us to quickly and simply change the structure of our table. All you need
to do is increment the DATABASE_VERSION integer and the next time you instantiate
the SQLiteHelper, it will automatically call its onUpgrade() method, at which point
we will first drop the old version of the database and then create the new version.

Finally, let's take a quick look at how we would insert and query for values in our
very basic, bare-bones table:

public class SQLiteExample extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // INIT OUR SQLITE HELPER
 SQLiteHelper sqh = new SQLiteHelper(this);

 // RETRIEVE A READABLE AND WRITEABLE DATABASE
 SQLiteDatabase sqdb = sqh.getWritableDatabase();

 // METHOD #1: INSERT USING CONTENTVALUE CLASS
 ContentValues cv = new ContentValues();
 cv.put(SQLiteHelper.NAME, "jason wei");

 // CALL INSERT METHOD
 sqdb.insert(SQLiteHelper.TABLE_NAME, SQLiteHelper.NAME,
 cv);

 // METHOD #2: INSERT USING SQL QUERY
 String insertQuery = "INSERT INTO " +
 SQLiteHelper.TABLE_NAME +
 " (" + SQLiteHelper.NAME + ") VALUES ('jwei')";
 sqdb.execSQL(insertQuery);

 // METHOD #1: QUERY USING WRAPPER METHOD
 Cursor c = sqdb.query(SQLiteHelper.TABLE_NAME,
 new String[] { SQLiteHelper.UID, SQLiteHelper.NAME },
 null, null, null, null, null);

Chapter 1

[23]

 while (c.moveToNext()) {
 // GET COLUMN INDICES + VALUES OF THOSE COLUMNS
 int id = c.getInt(c.getColumnIndex(SQLiteHelper.UID));
 String name =
 c.getString(c.getColumnIndex(SQLiteHelper.NAME));
 Log.i("LOG_TAG", "ROW " + id + " HAS NAME " + name);
 }

 c.close();

 // METHOD #2: QUERY USING SQL SELECT QUERY
 String query = "SELECT " + SQLiteHelper.UID + ", " +
 SQLiteHelper.NAME + " FROM " + SQLiteHelper.TABLE_NAME;
 Cursor c2 = sqdb.rawQuery(query, null);

 while (c2.moveToNext()) {
 int id =
 c2.getInt(c2.getColumnIndex(SQLiteHelper.UID));
 String name =
 c2.getString(c2.getColumnIndex(SQLiteHelper.NAME));
 Log.i("LOG_TAG", "ROW " + id + " HAS NAME " + name);
 }
 c2.close();

 // CLOSE DATABASE CONNECTIONS
 sqdb.close();
 sqh.close();
 }
}

Pay close attention to this example, as it will set the path for the next couple of
chapters. In this example, we first instantiate our SQLiteHelper and obtain a
writeable SQLiteDatabase object. We then introduce the ContentValues class,
which is a very convenient wrapper method that allows you to quickly insert,
update, or remove rows in your table. Here you'll notice that since our ID column
was created with the AUTOINCREMENT field, we don't need to manually assign
or increment our IDs when inserting rows. Thus, we only need to pass to the
ContentValues object the non-ID fields: in our case just the name column.

Storing Data on Android

[24]

Afterwards, we go back to our SQLiteDatabase object and call its insert()
method. The first argument is simply the name of the database, and the third
argument is the ContentValue we just created. The second argument is the only
tricky one — basically, in the event that an empty ContentValue is passed in,
because a SQLite database cannot insert an empty row, whatever column is
passed in as the second argument, the SQLite database will automatically set
the value of that column to null. By doing so, we can better avoid SQLite
exceptions from being thrown.

Additionally, we can insert rows into our database by just passing in a raw SQL
query, as shown in the second method, to the execSQL() method. Lastly, now that
we've inserted two rows into our table, let's practice getting and reading these rows
back. Here I show two methods as well — the first is by using the SQLiteDatabase
helper method query(), and the second is by executing a raw SQL query. In both
cases, a Cursor object is returned, which you can think of as an iterator over the
rows of the sub-table that is returned by your query:

while (c.moveToNext()) {
 // GET COLUMN INDICES + VALUES OF THOSE COLUMNS
 int id = c.getInt(c.getColumnIndex(SQLiteHelper.UID));
 String name = c.getString(c.getColumnIndex(SQLiteHelper.NAME));
 Log.i("LOG_TAG", "ROW " + id + " HAS NAME " + name);
}

Once we have the desired Cursor, the rest is straightforward. Because the Cursor
behaves like an iterator, in order to retrieve each row we need to throw it into a while
loop, and in each loop, we move the cursor down one row. Then, within the while
loop we get the column indices of the columns we want to pull data from: in our case,
let's just get both columns, though in practice often times you'll only want data from
specific columns at any given time. Finally, pass these column indices into the proper
get() methods of Cursor — namely, if the type of the column is an integer, then call
the getInt() method; if it is a string, then call the getString() method, and so on.

But again, what we see here are simply the building blocks leading up to a wealth of
tools and weapons that will soon be at our disposal. Soon we'll look at how we can
write various wrapper methods to simplify our lives when developing large-scale
applications, as well as dig further into the various methods and parameters the
SQLiteDatabase class provides us with.

Chapter 1

[25]

Summary
In this first chapter, we accomplished a lot. We started off by looking at the simplest
and most efficient data storage method of them all — the SharedPreferences
class. We looked at the pros and cons of using a SharedPreferences object in your
application, and though the class itself is limited to storing primitive data types, we
saw that its use cases are plenty.

Then, we moved up a little in complexity and examined both internal and external
storage mechanisms. Though not as intuitive and efficient as a shared preference
object, by leveraging internal and external storage, we are capable of storing both
much more data and much more complex data (that is, images, media files, and so
on). The pros and cons of using internal storage versus external storage are much
more subtle and many times are highly phone and hardware dependent. But in any
case, this goes to illustrate my earlier point that part of mastering data on Android
is being able to analyze the pros and cons of every storage method and intelligently
decide the most suitable method for your application's needs.

Finally, we dipped our toes into SQLite databases and looked at how you can
override the SQLiteOpenHelper class to create your custom SQLite database and
table. From there we saw an example of how to open and retrieve this SQLite
database from an Activity class, and subsequently, how to both insert into and
retrieve rows from our table. Because of the flexibility of the SQLiteDatabase
class, we saw that there were multiple ways for both inserting and retrieving
data, allowing those less familiar with SQL to utilize the wrapper methods, while
allowing those SQL aficionados to flex their querying prowess by executing raw
SQL commands.

In the next chapter, we'll focus on SQLite databases, and attempt to build a much
more complex, yet realistic, database schema.

Using a SQLite Database
Earlier we were introduced to various methods for storing data on Android – data
ranging from small and simple primitive values to large and complex file types.
In this chapter, we'll dive deeper into an extremely powerful and efficient way to
save and retrieve structured data: namely, by using SQLite databases. For the time
being, we'll focus on the versatility and robustness of the SQLite database as a local
backend for your application, before switching focus in later chapters and looking at
ways to bind this SQLite backend with the user interface frontend.

Creating advanced SQLite schemas
In the previous chapter, we ran through a simple example of creating and using
a table with two fields: an integer ID field and a String name field. However,
oftentimes the database schema that your application will need will require
much more than one table. And so, now that you suddenly need multiple tables,
some potentially dependent on one another, how can you effectively leverage the
SQLiteOpenHelper class to make the development of the application clean and
straightforward without compromising the robustness of your schema? Let's walk
through an example together to tackle this problem!

Consider a simple schema with three tables: the first a Students table with fields ID,
name, state, and grade, and the second a Courses table with fields ID, and name, and
the third a Classes table with fields ID, student ID, and course ID. What we're going
to try and create is a schema where we can add/remove students, add/remove
courses, and enroll/drop students from different courses. Some of the challenges
we can immediately think of are as follows:

•	 How do we obtain simple analytics, such as number of students per course?
•	 What happens when we drop a course with students in it?
•	 What happens when we remove a student who is enrolled in courses?

Using a SQLite Database

[28]

On that note, let's go straight into the code. We begin by defining the schema with
a couple of classes:

public class StudentTable {

 // EACH STUDENT HAS UNIQUE ID
 public static final String ID = "_id";

 // NAME OF THE STUDENT
 public static final String NAME = "student_name";

 // STATE OF STUDENT'S RESIDENCE
 public static final String STATE = "state";

 // GRADE IN SCHOOL OF STUDENT
 public static final String GRADE = "grade";

 // NAME OF THE TABLE
 public static final String TABLE_NAME = "students";

}

public class CourseTable {

 // UNIQUE ID OF THE COURSE
 public static final String ID = "_id";

 // NAME OF THE COURSE
 public static final String NAME = "course_name";

 // NAME OF THE TABLE
 public static final String TABLE_NAME = "courses";

}

// THIS ESSENTIALLY REPRESENTS A MAPPING FROM STUDENTS TO COURSES
public class ClassTable {

 // UNIQUE ID OF EACH ROW - NO REAL MEANING HERE
 public static final String ID = "_id";

 // THE ID OF THE STUDENT
 public static final String STUDENT_ID = "student_id";

 // THE ID OF ASSOCIATED COURSE
 public static final String COURSE_ID = "course_id";

 // THE NAME OF THE TABLE
 public static final String TABLE_NAME = "classes";

}

Chapter 2

[29]

And here's the code for creating the database schema (this should look very similar
to what we saw earlier):

public class SchemaHelper extends SQLiteOpenHelper {

 private static final String DATABASE_NAME = "adv_data.db";

 // TOGGLE THIS NUMBER FOR UPDATING TABLES AND DATABASE
 private static final int DATABASE_VERSION = 1;

 SchemaHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 // CREATE STUDENTS TABLE
 db.execSQL("CREATE TABLE " + StudentTable.TABLE_NAME
 + " (" + StudentTable.ID + " INTEGER PRIMARY KEY
 AUTOINCREMENT,"
 + StudentTable.NAME + " TEXT,"
 + StudentTable.STATE + " TEXT,"
 + StudentTable.GRADE + " INTEGER);");

 // CREATE COURSES TABLE
 db.execSQL("CREATE TABLE " + CourseTable.TABLE_NAME +
 " (" + CourseTable.ID + " INTEGER PRIMARY KEY AUTOINCREMENT,"
 + CourseTable.NAME + " TEXT);");

 // CREATE CLASSES MAPPING TABLE
 db.execSQL("CREATE TABLE " + ClassTable.TABLE_NAME +
 " (" + ClassTable.ID + " INTEGER PRIMARY KEY AUTOINCREMENT,"
 + ClassTable.STUDENT_ID + " INTEGER,"
 + ClassTable.COURSE_ID + " INTEGER);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 Log.w("LOG_TAG", "Upgrading database from version "
 + oldVersion + " to " + newVersion + ",
 which will destroy all old data");

 // KILL PREVIOUS TABLES IF UPGRADED
 db.execSQL("DROP TABLE IF EXISTS " + StudentTable.TABLE_NAME);
 db.execSQL("DROP TABLE IF EXISTS " + CourseTable.TABLE_NAME);
 db.execSQL("DROP TABLE IF EXISTS " + ClassTable.TABLE_NAME);

 // CREATE NEW INSTANCE OF SCHEMA
 onCreate(db);
 }
}

Using a SQLite Database

[30]

So here we see that in our onCreate() method we execute SQL commands to
create all three tables, and furthermore, in the onUpgrade() method we execute
SQL commands that drop all three tables and subsequently recreate all three tables.
Of course, since we are overriding the SQLiteOpenHelper class, in theory we can
customize the behavior of these methods in any way we want (for instance, some
developer's might not want to drop the entire schema in the onUpgrade() method),
but for now let's keep the functionality simple.

At this point, for those who are well versed in SQL programming and database
schemas, you might be wondering if it's possible to add triggers and key constraints
to your SQLite database schemas. The answer is, "yes, you can use triggers but no,
you cannot use foreign key constraints." In any case, to spend any time on writing
and implementing triggers would be deviating too much from the core content of
this book, and so I chose to omit that discussion (though these could certainly be
helpful even in our simple example).

Now that we have our schema created, before moving on to designing all kinds
of complex queries for pulling different groups of data (this we'll see in the next
chapter), it's time to write some wrapper methods. This will help us to address some
of the questions mentioned previously, which will ultimately help us in creating a
robust database.

Wrappers for your SQLite database
So we have this somewhat complicated schema in front of us now, and earlier we
mentioned the questions of what would happen if we removed a student who is
enrolled in courses, and vice versa what would happen if we dropped a course
with multiple students enrolled in it? Certainly, we wouldn't want either case to
happen – in the first, we'd have courses filled with students who are no longer even
enrolled in the university, and in the second, we'd have students showing up for
courses that are no longer even being offered!

And so it's time to enforce some of these rules and we'll do this by adding some
convenient methods to our SchemaHelper class. Again, some of these rules
could be enforced by using trigger statements (remember that Android's SQLite
database doesn't support key constraints), but one of the benefits of using wrapper
methods is that they are much more intuitive to developers who may be new to
your application's code base. By using a wrapper class, a developer is able to safely
interact with a database whose schema the developer may know very little about.
Now, let's start by tackling the simple wrappers:

public class SchemaHelper extends SQLiteOpenHelper {

 private static final String DATABASE_NAME = "adv_data.db";

Chapter 2

[31]

 // TOGGLE THIS NUMBER FOR UPDATING TABLES AND DATABASE
 private static final int DATABASE_VERSION = 1;

 SchemaHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 ...
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {
 ...
 }

 // WRAPPER METHOD FOR ADDING A STUDENT
 public long addStudent(String name, String state, int grade) {
 // CREATE A CONTENTVALUE OBJECT
 ContentValues cv = new ContentValues();
 cv.put(StudentTable.NAME, name);
 cv.put(StudentTable.STATE, state);
 cv.put(StudentTable.GRADE, grade);

 // RETRIEVE WRITEABLE DATABASE AND INSERT
 SQLiteDatabase sd = getWritableDatabase();
 long result = sd.insert(StudentTable.TABLE_NAME,
 StudentTable.NAME, cv);
 return result;
 }

 // WRAPPER METHOD FOR ADDING A COURSE
 public long addCourse(String name) {
 ContentValues cv = new ContentValues();
 cv.put(CourseTable.NAME, name);

 SQLiteDatabase sd = getWritableDatabase();
 long result = sd.insert(CourseTable.TABLE_NAME,
 CourseTable.NAME, cv);
 return result;
 }

 // WRAPPER METHOD FOR ENROLLING A STUDENT INTO A COURSE
 public boolean enrollStudentClass(int studentId, int courseId) {
 ContentValues cv = new ContentValues();

Using a SQLite Database

[32]

 cv.put(ClassTable.STUDENT_ID, studentId);
 cv.put(ClassTable.COURSE_ID, courseId);

 SQLiteDatabase sd = getWritableDatabase();
 long result = sd.insert(ClassTable.TABLE_NAME,
 ClassTable.STUDENT_ID, cv);
 return (result >= 0);
 }
}

Now we have three simple wrapper methods for adding data into our schema. The
first two involve adding new students and new courses into the database and the
last one involves adding a new mapping between a student (represented by his/her
ID) and a course (essentially, we are enrolling a student into a course through this
mapping). Notice that in each wrapper method, we're simply adding the values into
a ContentValue object, retrieving the writeable SQLite database, and then inserting
this ContentValue as a new row into the specified table. Next, let's write some
wrapper methods for retrieving data:

public class SchemaHelper extends SQLiteOpenHelper {

 public long addStudent(String name, String state, int grade) {

 }

 public long addCourse(String name) {

 }

 public boolean enrollStudentClass(int studentId, int courseId) {

 }

 // GET ALL STUDENTS IN A COURSE
 public Cursor getStudentsForCourse(int courseId) {
 SQLiteDatabase sd = getWritableDatabase();

 // WE ONLY NEED TO RETURN STUDENT IDS
 String[] cols = new String[] { ClassTable.STUDENT_ID };

 String[] selectionArgs = new String[] {
 String.valueOf(courseId) };

 // QUERY CLASS MAP FOR STUDENTS IN COURSE
 Cursor c = sd.query(ClassTable.TABLE_NAME, cols,
 ClassTable.COURSE_ID + "= ?", selectionArgs, null,
 null, null);

 return c;
 }

Chapter 2

[33]

 // GET ALL COURSES FOR A GIVEN STUDENT
 public Cursor getCoursesForStudent(int studentId) {
 SQLiteDatabase sd = getWritableDatabase();

 // WE ONLY NEED TO RETURN COURSE IDS
 String[] cols = new String[] { ClassTable.COURSE_ID };

 String[] selectionArgs = new String[] {
 String.valueOf(studentId) };

 Cursor c = sd.query(ClassTable.TABLE_NAME, cols,
 ClassTable.STUDENT_ID + "= ?", selectionArgs, null,
 null, null);

 return c;
 }

 public Set<Integer> getStudentsByGradeForCourse(int courseId,
 int grade) {
 SQLiteDatabase sd = getWritableDatabase();

 // WE ONLY NEED TO RETURN COURSE IDS
 String[] cols = new String[] { ClassTable.STUDENT_ID };

 String[] selectionArgs = new String[] {
 String.valueOf(courseId) };

 // QUERY CLASS MAP FOR STUDENTS IN COURSE
 Cursor c = sd.query(ClassTable.TABLE_NAME, cols,
 ClassTable.COURSE_ID + "= ?", selectionArgs, null,
 null, null);

 Set<Integer> returnIds = new HashSet<Integer>();
 while (c.moveToNext()) {
 int id = c.getInt(c.getColumnIndex
 (ClassTable.STUDENT_ID));
 returnIds.add(id);
 }

 // MAKE SECOND QUERY
 cols = new String[] { StudentTable.ID };
 selectionArgs = new String[] { String.valueOf(grade) };

 c = sd.query(StudentTable.TABLE_NAME, columns,
 StudentTable.GRADE + "= ?", selectionArgs, null, null, null);
 Set<Integer> gradeIds = new HashSet<Integer>();
 while (c.moveToNext()) {
 int id = c.getInt(c.getColumnIndex(StudentTable.ID));
 gradeIds.add(id);
 }

Using a SQLite Database

[34]

 // RETURN INTERSECTION OF ID SETS
 returnIds.retainAll(gradeIds);

 return returnIds;
 }
}

Here we have three fairly similar methods which allow us to get very practical
datasets from our schema:

•	 Being able to grab a list of students in a given course
•	 Being able to grab a list of courses for a given student
•	 Lastly (just to add some complexity), being able to grab a list of students

of a certain grade for a given course

Note that in all three methods we begin to play with some of the parameters in the
SQLiteDatabase object's query() method, and so now seems like a great time to
take a closer look at what those parameters are and what exactly we did previously:

public Cursor query(String table, String[] columns, String selection,
String[] selectionArgs, String groupBy, String having, String orderBy)

And alternatively:

public Cursor query(String table, String[] columns, String selection,
String[] selectionArgs, String groupBy, String having, String orderBy,
String limit)
public Cursor query(boolean distinct, String table, String[] columns,
String selection, String[] selectionArgs, String groupBy, String
having, String orderBy, String limit)

And just for simplicity, here's how we're calling the previous method:

Cursor c = sd.query(ClassTable.TABLE_NAME, cols, ClassTable.COURSE_ID
+ "= ?", selectionArgs, null, null, null);

So a quick explanation of the three methods. The first query() method is the
standard one, where you specify the table in the first argument and then which
columns you want to return in the second argument. This is equivalent to performing
a SELECT statement in standard SQL. Then, in the third argument we begin to filter
our query and the syntax for these filters is equivalent to including a WHERE clause at
the end of our SELECT query. In our example, we see that we only ask to return the
column containing student IDs, as this is the only column we care about (since we're
filtering on the course ID column, it would be unnecessarily redundant to return this
column as well). Then, in the filter parameter, we ask to filter by the course ID and
the syntax is equivalent to passing in the following String:

WHERE course_id = ?

Chapter 2

[35]

Here, the question mark acts as a place card for whatever value we will pass into the
filter. In other words, the format of the WHERE statement is there, but we just need to
substitute into the question mark the actual value we want to filter by. In this case,
we pass into the fourth parameter the given course ID.

The last three arguments (groupBy, having, and orderBy) should make a lot
of sense for those familiar with SQL, but for those who aren't, here's a quick
explanation of each:

•	 groupBy – adding this will allow you to group the results by a specified
column(s). This would come in handy if you needed to obtain, say, a table
with course IDs and the number of students enrolled in that course: simply
grouping by course ID in the Class table would accomplish this.

•	 having – used in conjunction with a groupBy clause, this clause allows you
to filter the aggregated results. Say you grouped by course ID in the Class
table and wanted to filter out all classes with having less than 10 students
enrolled, you could accomplish this with the having clause.

•	 orderBy – a fairly straightforward clause to use, the orderBy clause allows
us to sort our query's resulting sub table by a specified column(s) and by
ascending or descending order. For instance, say you wanted to sort the
Students table by grade and then by name – specifying an orderBy clause
would allow you to do this.

Lastly, in the two query() variants, you'll see the added parameters limit and
distinct: the limit parameter allows you to limit how many rows you want back,
and the distinct boolean allows you to specify whether you only want to return
distinct rows. If this still doesn't make too much sense to you, no fears – we'll focus
on building complex queries in the next chapter.

Now that we understand how the query() method works, let's revisit our earlier
example and flush out the getStudentsByGradeForCourse() method. Though there
are many ways to execute this method, conceptually they are all very similar: first,
we query for all the students in the given course, and then of these students we want
to filter and only keep those in the specified grade. The way I implemented it was by
first obtaining a set of all student IDs from the given course, then obtaining a set of
all the students for the given grade, and simply returning the intersection of those
two sets. As for whether or not this is the optimal implementation simply depends
on the size of your database.

Using a SQLite Database

[36]

And now, last but not least, let's enforce those removal rules mentioned earlier with
some special remove wrapper methods:

public class SchemaHelper extends SQLiteOpenHelper {

 public Cursor getStudentsForCourse(int courseId) {
 ...
 }

 public Cursor getCoursesForStudent(int studentId) {
 ...
 }

 public Set<Integer> getStudentsAndGradeForCourse(int courseId,
 int grade) {
 ...
 }

 // METHOD FOR SAFELY REMOVING A STUDENT
 public boolean removeStudent(int studentId) {
 SQLiteDatabase sd = getWritableDatabase();
 String[] whereArgs = new String[] { String.valueOf(studentId)
};

 // DELETE ALL CLASS MAPPINGS STUDENT IS SIGNED UP FOR
 sd.delete(ClassTable.TABLE_NAME, ClassTable.STUDENT_ID +
 "= ? ", whereArgs);

 // THEN DELETE STUDENT
 int result = sd.delete(StudentTable.TABLE_NAME,
 StudentTable.ID + "= ? ", whereArgs);
 return (result > 0);
 }

 // METHOD FOR SAFELY REMOVING A STUDENT
 public boolean removeCourse(int courseId) {
 SQLiteDatabase sd = getWritableDatabase();
 String[] whereArgs = new String[] { String.valueOf(courseId)
};

 // MAKE SURE YOU REMOVE COURSE FROM ALL STUDENTS ENROLLED
 sd.delete(ClassTable.TABLE_NAME, ClassTable.COURSE_ID +
 "= ? ", whereArgs);

 // THEN DELETE COURSE
 int result = sd.delete(CourseTable.TABLE_NAME,
 CourseTable.ID + "= ? ", whereArgs);
 return (result > 0);
 }
}

Chapter 2

[37]

So here we have two remove methods, and in each one we manually enforce
some schema rules by preventing someone from dropping a course without first
removing those courses from the Class mapping table and vice versa. We call the
SQLiteDatabase class's delete() method which, much like the query() method,
allows you to pass in the table name, specify a filter argument (that is, a WHERE
clause), and then allows you to pass in those filters' values (note that in both the
delete() and query() methods, you can specify multiple filters, but more on
this later).

Finally, let's put these methods in action and implement an Activity class:

public class SchemaActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 SchemaHelper sh = new SchemaHelper(this);

 // ADD STUDENTS AND RETURN THEIR IDS
 long sid1 = sh.addStudent("Jason Wei", "IL", 12);
 long sid2 = sh.addStudent("Du Chung", "AR", 12);
 long sid3 = sh.addStudent("George Tang", "CA", 11);
 long sid4 = sh.addStudent("Mark Bocanegra", "CA", 11);
 long sid5 = sh.addStudent("Bobby Wei", "IL", 12);

 // ADD COURSES AND RETURN THEIR IDS
 long cid1 = sh.addCourse("Math51");
 long cid2 = sh.addCourse("CS106A");
 long cid3 = sh.addCourse("Econ1A");

 // ENROLL STUDENTS IN CLASSES
 sh.enrollStudentClass((int) sid1, (int) cid1);
 sh.enrollStudentClass((int) sid1, (int) cid2);
 sh.enrollStudentClass((int) sid2, (int) cid2);
 sh.enrollStudentClass((int) sid3, (int) cid1);
 sh.enrollStudentClass((int) sid3, (int) cid2);
 sh.enrollStudentClass((int) sid4, (int) cid3);
 sh.enrollStudentClass((int) sid5, (int) cid2);

 // GET STUDENTS FOR COURSE
 Cursor c = sh.getStudentsForCourse((int) cid2);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(ClassTable.STUDENT_ID);
 int sid = c.getInt(colid);

Using a SQLite Database

[38]

 System.out.println("STUDENT " + sid + "
 IS ENROLLED IN COURSE " + cid2);
 }

 // GET STUDENTS FOR COURSE AND FILTER BY GRADE
 Set<Integer> sids = sh.getStudentsByGradeForCourse
 ((int) cid2, 11);
 for (Integer sid : sids) {
 System.out.println("STUDENT " + sid +
 " OF GRADE 11 IS ENROLLED IN COURSE " + cid2);
 }

 }

}

So first we add some dummy data into our schema; in my case, I will add five
students and three courses, and then enroll those students into some classes. Once
the schema has some data in it, I will try out some methods and first request all the
students signed up for CS106A. Afterwards, I will test another wrapper method we
wrote and request all the students signed up for CS106A, but this time only those
students in grade 11. And so the output from running this Activity is as follows:

And voila! We quickly see that Students 1, 2, 3, and 5 were all enrolled in CS106A.
However, after filtering by grade 11, we see that Student 3 is the only one signed up
for CS106A in grade 11 – poor George. Now let's test out the remove methods:

public class SchemaActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 SchemaHelper sh = new SchemaHelper(this);

 long sid1 = sh.addStudent("Jason Wei", "IL", 12);

Chapter 2

[39]

 // GET CLASSES I'M TAKING
 c = sh.getCoursesForStudent((int) sid1);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(ClassTable.COURSE_ID);
 int cid = c.getInt(colid);
 System.out.println("STUDENT " + sid1 +
 " IS ENROLLED IN COURSE " + cid);
 }

 // TRY REMOVING A COURSE
 sh.removeCourse((int) cid1);

 System.out.println("------------------------------");

 // SEE IF REMOVAL KEPT SCHEMA CONSISTENT
 c = sh.getCoursesForStudent((int) sid1);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(ClassTable.COURSE_ID);
 int cid = c.getInt(colid);
 System.out.println("STUDENT " + sid1 +
 " IS ENROLLED IN COURSE " + cid);
 }

 }

}

This time around, we first ask for all the classes that Student 1 (myself) is enrolled in.
But oh no! Something happened to Math51 this quarter and so it was cancelled! We
remove the course and make another request to look at all the classes that Student
1 is enrolled in – expecting to see that Math51 has been removed from the list. The
output is as follows:

Using a SQLite Database

[40]

Indeed, we see that at first I was enrolled in both Math51 and CS106A, but after the
course was removed, I'm not only enrolled in CS106A! By putting wrappers around
some of these common insert, get, and remove functions, we can both simplify our
development lives going forward while also enforcing certain schema rules.

Finally, let's conclude this chapter with how you can hook into a SQLite terminal to
look at your data in table form and also issue SQLite queries – something extremely
useful when debugging your application and making sure that your data is being
added/updated/removed correctly.

Debugging your SQLite database
The Android platform provides you with a very powerful debugging friend called
the Android Debug Bridge (adb). The adb shell is a versatile command-line interface
that allows you to communicate with a running emulator or a connected Android
device. The adb tool can be found in your SDK's/platform-tools directory and,
once, started is capable of doing everything from installing applications, to pushing
and pulling data from your emulator, to plugging into your sqlite3 database and
issuing queries (see the developer docs http://developer.android.com/guide/
developing/tools/adb.html for more details).

In order to use adb, simply open your terminal and navigate to /<your-sdk-
directory>/platform-tools/ and type the following command:

adb shell

or type the following command if you want to target a specific emulator to
connect to:

adb –s emulator-xxxx shell

At this point, you should have started the adb tool, at which point you need to tell
it to connect to the emulator's sqlite3 database. This can be done by issuing the
command sqlite3 and then passing the path to your application's database file
as follows:

sqlite3 /data/data/<your-package-path>/databases/<your-database>.db

In our case, the command looked like the following:

sqlite3 /data/data/jwei.apps.dataforandroid/databases/adv_data.db

Chapter 2

[41]

And at this point, we should be able to issue all kinds of SQL queries that allow us
to do everything from looking at our database schema to updating and removing
individual rows of data in any of our tables. Some sample commands that you'll
probably find most useful are as follows:

•	 .tables – shows you a list of all the tables in your database
•	 .output FILENAME – allows you to output the results of a query into a file

(say, for further analysis)
•	 .mode MODE – allows you to specify the output file format (that is, as a CSV,

HTML, and so on, could be useful for spreadsheet type analytics)
•	 SELECT * FROM table_name – standard query for selecting all columns of a

given table (this is equivalent to a get() command for rows of a table)
•	 SELECT * FROM table_name WHERE col = 'value' – standard query for

selecting all columns of a given table but with a column filter
•	 SELECT col1, col2 FROM table_name – standard query for selecting

specific columns of a given table

And here's an example of us putting some of these commands to use with our
previous schema:

Using a SQLite Database

[42]

Hopefully this should get you going, but for a full list of sqlite3 commands just
check out http://www.sqlite.org/sqlite.html, and for a more extensive list
of complex queries just stay put – it's coming up next.

Summary
In this chapter, we went from a super bare-bones database schema that just
contained one table to an entire schema containing multiple interdependent
tables. We first saw how to create and upgrade multiple tables through overriding
the SQLiteOpenHelper class, and then thought about some of the challenges
surrounding a database schema with interdependencies. We decided to tackle
these challenges by surrounding our database schema and its tables with an army
of wrapper methods, designed for both ease of future development, as well as
robustness in future data. These wrapper methods included everything from simple
add methods, helpful as we were able to conceal the need to constantly request a
writeable SQLiteDatabase, to more complex remove methods which concealed all
of the functionality needed for enforcing various schema rules.

Then, we actually implemented an Activity class to show off our new database
schema and ran through some sample database commands to test their functionality.
Though we were able to validate and output the results of all our commands, we
realized that this was a pretty verbose and suboptimal way for debugging our sqlite3
database, and so we looked into the Android Debug Bridge (adb) tool. With the adb
tool, we were able to open a command-line terminal that then hooked into a running
instance of an emulator or Android device, and subsequently, connect to that
emulator/device's sqlite3 database. Here we were able to interact with the sqlite3
database in a very natural way by issuing various SQL commands and queries.

Now, the queries that we've seen so far have been pretty elementary, but if
necessary, will do the trick for the majority of your application development needs.
However, we'll see in the next chapter that by mastering more advanced SQL query
concepts, we can enjoy both a substantial performance boost as well as a substantial
memory boost in our application!

SQLite Queries
In the last chapter, we kicked our database building up a notch – transforming a
simple schema involving just one, lone table, into a complex schema involving three
interdependent tables. And now that we have a solid foundation in developing
custom SQLite databases for Android, it's time to put the icing on the cake.

Though in theory, we could have one universal get() query which returns to us
all columns of every row in our database as a Cursor object, and then filter and
manipulate each row for our desired data – we can do better. Don't get me
wrong – Java is fast – but when it comes to dealing with potentially thousands of
rows of data on relatively limited memory, why not optimize things and let SQL
do what it does best – that is, query for things!

In this next chapter, we will focus on striking the right balance between parsing and
filtering your data on the Android client side (that is, with the Java interface), and
building a more advanced SQL query and parsing/filtering your data in the SQLite
database itself.

Methods for building SQLite queries
First, let's establish the different ways in which we can build a query. Just like we
saw earlier, the most low-level method for querying the SQLite database is through
the SQLiteDatabase class's rawQuery() method, defined as follows:

Cursor rawQuery(String sql, String[] selectionArgs)

This method is primarily for those with a strong background in SQL, as you pass
SQL queries directly into the method as the first parameter. If your SQL query
involves any sort of WHERE filter, then the second parameter allows you to pass in
these filter values (we'll see several examples of this in use soon).

SQLite Queries

[44]

The second query method the SQLiteDatabase class provides you with is a
convenience wrapper for submitting queries – with the query() method (something
we also saw earlier) any actual SQL programming is hidden and, instead, all parts of
the query are passed in as parameters:

Cursor query(String table, String[] columns, String selection,
String[] selectionArgs, String groupBy, String having, String orderBy)

With alternative query() methods containing parameters for distinct and limit
constraints. Again, the previous parameters should be relatively self-explanatory, but
all these methods will make the most sense when seen together for one given query.
However, before moving on to those examples, let's take a look at the third method
for building SQL queries.

This third method is one we haven't seen yet and comes from the
SQLiteQueryBuilder class. Instead of having to submit raw SQL queries, or
having to deal with convenience methods, which still may seem intimidating to
those completely new to SQL, the Android platform decided to provide an entire
convenience class to help developers interact with their SQLite databases as
seamlessly as possible. Though this class has many methods associated with it
(and I invite you to browse the developer docs online for more details), the
following are some of the more important methods that we'll be highlighting
later in this chapter:

String buildQuery(String[] projectionIn, String selection, String
groupBy, String having, String sortOrder, String limit)

The previous method is a convenience method for constructing a SELECT statement,
which can be used then for a group of SELECT statements that will be joined through
a UNION operator in the buildUnionQuery() method as follows:

String buildUnionQuery(String[] subQueries, String sortOrder,
String limit)

A method which allows you to pass in a set of SELECT statements (potentially
constructed using the buildQuery() convenience method) and constructs a
query that will return the UNION of those subqueries is as follows:

String buildQueryString(boolean distinct, String tables, String[]
columns, String where, String groupBy, String having, String orderBy,
String limit)

Builds a SQL query with the given parameters, similar to the SQLiteDatabase class's
query() method but simply returns the query as a String:

Void setDistinct(boolean distinct)

Chapter 3

[45]

The above allows you to set your current query as DISTINCT rows only.

Void setTables(String inTables)

Allows you to set the list of tables to query and if multiple tables are passed, in then
it allows you to perform a JOIN on those tables.

So now that we have a list of all the different methods available to us, let's explore
some basic SQLite queries and look at how we would perform relatively simple
queries using each of the methods described previously!

SELECT statements
Using our Students schema from Chapter 2, Using a SQLite Database, let's begin with
a glimpse at what our Students table looks like at this point:

Id Name State Grade
1 Jason Wei IL 12
2 Du Chung AR 12
3 George Tang CA 11
4 Mark Bocanegra CA 11
5 Bobby Wei IL 12

In this way, for each query that we do, we'll know exactly what results we should
expect and, thus, we can validate our queries. Before we dive right, in here's a list
of what we'll cover in this section:

•	 SELECT statements
•	 SELECT statements with column specifications
•	 WHERE filters
•	 AND/OR operators
•	 DISTINCT clause
•	 LIMIT clause

It'll be a lot to take in at once, especially for those with no prior SQL experience, but
once you learn these basic building blocks, you'll be well on your way to building
longer, more complex queries. And so, let's begin with the most basic SELECT query:

public class BasicQueryActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {

SQLite Queries

[46]

 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 /*
 * SELECT Query
 */

 System.out.println("METHOD 1");

 // METHOD #1 - SQLITEDATABASE RAWQUERY()
 Cursor c = sqdb.rawQuery("SELECT * from " +
 StudentTable.TABLE_NAME, null);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 String name = c.getString(colid);
 System.out.println("GOT STUDENT " + name);
 }

 System.out.println("METHOD 2");

 // METHOD #2 - SQLITEDATABASE QUERY()
 c = sqdb.query(StudentTable.TABLE_NAME, null, null,
 null, null, null, null);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 String name = c.getString(colid);
 System.out.println("GOT STUDENT " + name);
 }

 System.out.println("METHOD 3");

 // METHOD #3 - SQLITEQUERYBUILDER
 String query = SQLiteQueryBuilder.buildQueryString
 (false, StudentTable.TABLE_NAME, null, null, null, null,
 null, null);
 System.out.println(query);
 c = sqdb.rawQuery(query, null);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 String name = c.getString(colid);
 System.out.println("GOT STUDENT " + name);
 }

 }
}

Chapter 3

[47]

Here, we see that in the first method, we're simply passing in the standard SQL
query, while in the second method we are breaking down the query into its different
parameters (that is, its table name, its selection filters, and so on). Finally, in the last
method, which we notice looks very similar to the second method (for now), we
again break down the query into its different parameters, but instead of returning
a Cursor, our method returns the query as a String, which we can then execute
as a raw query. The reasoning behind this is that one of SQLiteQueryBuilder's
strengths is that you can specify multiple queries and submit them all at the same
time and effectively perform a UNION SQL query – but again we will play with this
functionality later.

Now, let's take a look at the results from those queries and see if we can validate
the results:

Looks pretty good to me! We see that each method was able to return all rows of
our table as expected. Under the third method, we can also see the query that was
constructed using our SQLiteQueryBuilder class and indeed verify that the SQL
query we submitted in the first method matches that built-in the third method.

Now, say you have a large table with thousands of rows of data and with tens of
columns – for the sake of both efficiency and memory, it's often suggested in practice
that you don't return the entire table with your queries but, instead, refine your
queries to only return those columns of data of interest! And so, let's take a look at
how we can specify which columns to return in our SELECT queries:

/*
* SELECT COLUMNS Query
*/

System.out.println("METHOD 1");

SQLite Queries

[48]

// METHOD #1 - SQLITEDATABASE RAWQUERY()
c = sqdb.rawQuery(
 "SELECT " + StudentTable.NAME + "," + StudentTable.STATE + " from "
 + StudentTable.TABLE_NAME, null);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);

 }

System.out.println("METHOD 2");

// METHOD #2 - SQLITEDATABASE QUERY()
String[] cols = new String[] { StudentTable.NAME, StudentTable.STATE
};
c = sqdb.query(StudentTable.TABLE_NAME, cols, null, null, null,
null, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);

}

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
query = SQLiteQueryBuilder.buildQueryString(false, StudentTable.TABLE_
NAME, cols, null, null, null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);

}

And so, we see that the overall structure of the query is the same for all three
methods, but in methods two and three, we pass in a String[] containing the
columns of data that we want. Again, just to verify that our queries are behaving
the way we want them to, here's the output of those queries:

Chapter 3

[49]

And so we see that indeed we are able to return each student, along with their
respective states. Finally again, notice the query that is constructed in the third
method and compare it to the raw SQL query that was passed to the first
method – they should match exactly and they do.

WHERE filters and SQL operators
Now, oftentimes it's important to be able to filter your data not just by columns
but also by column values! This is where the WHERE filter comes in handy and
these WHERE filters will definitely be the most-used clause you will run into as
a database developer. On that note, let's take a look at how these WHERE filters
(also known as selection parameters in Android) are implemented with our
three query-building methods:

/*
* WHERE Filter – Filter by State
*/

System.out.println("METHOD 1");

// METHOD #1 - SQLITEDATABASE RAWQUERY()
c = sqdb.rawQuery("SELECT * from " + StudentTable.TABLE_NAME + " WHERE
" + StudentTable.STATE + "= ? ", new String[] { "IL" });
while (c.moveToNext()) {

SQLite Queries

[50]

 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);

}

System.out.println("METHOD 2");
// METHOD #2 - SQLITEDATABASE QUERY()
c = sqdb.query(StudentTable.TABLE_NAME, null, StudentTable.STATE + "=
? ", new String[] { "IL" }, null, null, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);

}

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
query = SQLiteQueryBuilder.buildQueryString(false, StudentTable.TABLE_
NAME, null, StudentTable.STATE + "='IL'", null, null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);

}

With the first method, we can see how a standard SQL WHERE clause is formatted.
Knowing this, with our second and third methods we see that, we can just pass
into the selection parameter a string formatted like the WHERE clause but omitting
the WHERE itself (this is automatically appended to your query for you). This can
explicitly be seen with the constructed query returned by our SQLiteQueryBuilder
class in the third method:

Chapter 3

[51]

Just like with any programming language, you can filter logic through the use of
AND/OR operators; the same applies to SQL and, specifically, with SQL WHERE filters.
Instead of asking for all rows which satisfy one set of conditions, you can write
queries which would return rows that satisfy all given conditions, or more loosely,
just one of several given conditions. An example of this is as follows, where instead
of only returning students from Illinois, we utilize the SQL OR operator and also ask
for students from Arkansas:

/*
* AND/OR Clauses
*/

System.out.println("METHOD 1");

// METHOD #1 - SQLITEDATABASE RAWQUERY()
c = sqdb.rawQuery("SELECT * from " + StudentTable.TABLE_NAME + " WHERE
" + StudentTable.STATE + "= ? OR " + StudentTable.STATE + "= ?", new
String[] { "IL", "AR" });

System.out.println("METHOD 2");

// METHOD #2 - SQLITEDATABASE QUERY()
c = sqdb.query(StudentTable.TABLE_NAME, null, StudentTable.STATE +
"= ? OR " + StudentTable.STATE + "= ?", new String[] { "IL", "AR" },
null, null, null);

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
query = SQLiteQueryBuilder.buildQueryString(false, StudentTable.TABLE_
NAME, null, StudentTable.STATE + "='IL' OR " + StudentTable.STATE +
"='AR'", null, null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);

SQLite Queries

[52]

Here you'll notice that the syntax is, again, very similar to the earlier example, but
this time we've injected an OR operator into the WHERE filter (selection parameter) and
have placed two selection arguments (that is, the '?') instead of one. It's important to
note that the order of arguments contained in your String[] is important – more
specifically, that the first String in your array will correspond to the first '?' place
card, and so on. And of course, if you want to use the AND operator, then just apply
the previous syntax but replacing OR with AND. Taking a quick peak at the output, we
see as follows:

And so now our buddy Du has popped into the result set!

DISTINCT and LIMIT clauses
Powering on, let's take a look at the DISTINCT clause in SQL:

/*
* DISTINCT Clause
*/

System.out.println("METHOD 1");

// METHOD #1 - SQLITEDATABASE RAWQUERY()
c = sqdb.rawQuery("SELECT DISTINCT " + StudentTable.STATE + " from " +
StudentTable.TABLE_NAME, null);

System.out.println("METHOD 2");

// METHOD #2 - SQLITEDATABASE QUERY()
// SWITCH TO MORE GENERAL QUERY() METHOD
c = sqdb.query(true, StudentTable.TABLE_NAME, new String[] {
StudentTable.STATE }, null, null, null, null, null, null);

...

Chapter 3

[53]

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
query = SQLiteQueryBuilder.buildQueryString(true, StudentTable.TABLE_
NAME, new String[] { StudentTable.STATE },null, null, null, null,
null);
System.out.println(query);
c = sqdb.rawQuery(query, null);

The DISTINCT clause is also relatively straightforward – it allows you to specify
in your query that for the given columns you only want to return a subset of rows
which have distinct values for that column. Notice that I emphasize for the given
columns, as in order for the DISTINCT clause to be meaningful, a column must be
specified in your query.

In my previous example, we'll notice a couple of things. First off, in our query,
notice that we follow the DISTINCT clause with the column that we want it to apply
to – namely the State column. Essentially, we're asking my query to return to us a
subtable with all of the distinct states in my database. Said another way, we want to
know what states our students come from and only want one row per state. Another
thing worth mentioning is that we've switched the query() statement that we were
previously using in the second method – this time switching it to a more general
query() method which has parameters for specifying a DISTINCT clause. The results
for this query were:

SQLite Queries

[54]

Which is indeed the case for our current table! And last but not least, let's take a look
at the LIMIT clause:

/*
* LIMIT Clause
*/

System.out.println("METHOD 1");

// METHOD #1 - SQLITEDATABASE RAWQUERY()
c = sqdb.rawQuery("SELECT * from " + StudentTable.TABLE_NAME + " LIMIT
0,3", null);

...

System.out.println("METHOD 2");

// METHOD #2 - SQLITEDATABASE QUERY()
// SWITCH TO MORE GENERAL QUERY() METHOD
c = sqdb.query(false, StudentTable.TABLE_NAME, null, null, null, null,
null, null, "3");

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
query = SQLiteQueryBuilder.buildQueryString(false, StudentTable.TABLE_
NAME, null, null, null, null, null, "3");
System.out.println(query);
c = sqdb.rawQuery(query, null);

The LIMIT clause simply allows you to limit how many rows to return. The LIMIT
clause takes on two formats:

•	 LIMIT n, m

•	 LIMIT n

The first format tells the query to return just m rows (that is, limiting how many rows
to return) starting from row n. The second format simply tells the query to return the
first n rows which satisfy the given conditions. The first format definitely provides
us with more flexibility, but, unfortunately, neither the second nor the third method
allows us to take advantage of this format (due to the way that it automatically
constructs the query for us), while the first format (the raw SQL query) can execute
any valid SQL query. This is a small example of the versatility that executing raw
SQL queries gives us, and is a perfect example of trading versatility for convenience
and abstraction. In any case, let's just make one last sanity check here to make sure
our queries are actually only returning three rows:

Chapter 3

[55]

Yup – looks good to me! In all methods, even though we didn't specify any WHERE
filters, we were still only returned the first three valid results, as expected.

In this section, we looked at a number of clauses built-into the SQL language which
allow us to have control over our data. By introducing these clauses one by one,
the hope was that you could first see all of the pieces of the puzzle. Then, when
the time comes for you to implement your own database, you'll be able to put the
pieces together and execute powerful queries which quickly return meaningful
data. However, before we wrap up this chapter, let's look at some advanced queries,
which will take more time to master and understand, but again will add another tool
under your belt.

ORDER BY and GROUP BY clauses
In this section, we'll look at some of the more advanced and more nuanced
features of the SQL language as well as their implementations in the various SQL
convenience classes of Android. Again, before we dive in and attack these features,
here's a list of what we'll be covering in this next section:

•	 ORDER BY clauses
•	 GROUP BY clauses
•	 HAVING filters
•	 SQL Functions
•	 JOINS

So let's look at ORDER BY clauses in SQL:

public class AdvancedQueryActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

SQLite Queries

[56]

 setContentView(R.layout.main);

 SchemaHelper sch = new SchemaHelper(this);
 SQLiteDatabase sqdb = sch.getWritableDatabase();

 /*
 * ORDER BY Clause
 */

 System.out.println("METHOD 1");

 // METHOD #1 - SQLITEDATABASE RAWQUERY()
 Cursor c = sqdb.rawQuery("SELECT * from " +
 StudentTable. TABLE_NAME + " ORDER BY " + StudentTable.STATE +
 " ASC", null);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);
 String name = c.getString(colid);
 String state = c.getString(colid2);
 System.out.println("GOT STUDENT " + name +
 " FROM " + state);
 }

 System.out.println("METHOD 2");

 // METHOD #2 - SQLITEDATABASE QUERY()
 c = sqdb.query(StudentTable.TABLE_NAME, null, null,
 null, null, null, StudentTable.STATE + " ASC");
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);
 ...
 }

 System.out.println("METHOD 3");

 // METHOD #3 - SQLITEQUERYBUILDER
 String query = SQLiteQueryBuilder.buildQueryString
 (false, StudentTable.TABLE_NAME, null, null, null,
 null, StudentTable.STATE + " ASC", null);

 System.out.println(query);
 c = sqdb.rawQuery(query, null);
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.NAME);
 int colid2 = c.getColumnIndex(StudentTable.STATE);
 ...
 }
}
}

Chapter 3

[57]

Here the syntax for the ORDERBY clause is:

ORDER BY your_column ASC|DESC

So in the first method, we see this syntax in action, and then in the latter two
methods, we see that we simply need to pass in the column name followed by
either ASC or DESC (as a String) into the ORDERBY parameter of the respective query
methods. In the latter two methods, the syntax is essentially the same, and so I
won't go into too much detail here, but the important part is simply to know the
components of an SQL ORDERBY clause. In all three methods shown, we are sorting
our resulting subtable by the state column, and so to validate our query, we check
the output and see the following:

So, indeed, we see that the resulting rows are sorted in ascending order by the state.
Furthermore, just like with the basic queries, we can see the outputted SQL query
that is created by the SQLiteQueryBuilder class, and can verify that this is the same
query that is executed in our first method.

Now, moving on to GROUPBY clauses:

/*
* GROUP BY Clause
*/

System.out.println("METHOD 1");

// METHOD #1 - SQLITEDATABASE RAWQUERY()
String colName = "COUNT(" + StudentTable.STATE + ")";

SQLite Queries

[58]

c = sqdb.rawQuery("SELECT " + StudentTable.STATE + ","
+ colName + " from " + StudentTable.TABLE_NAME + " GROUP BY "
+ StudentTable.STATE, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.STATE);
 int colid2 = c.getColumnIndex(colName);
 String state = c.getString(colid);
 int count = c.getInt(colid2);
 System.out.println("STATE " + state + " HAS COUNT " +
 count);
}

System.out.println("METHOD 2");

// METHOD #2 - SQLITEDATABASE QUERY()
c = sqdb.query(StudentTable.TABLE_NAME, new String[] {
StudentTable.STATE, colName }, null, null,
StudentTable.STATE, null, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.STATE);
 int colid2 = c.getColumnIndex(colName);

}

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
query = SQLiteQueryBuilder.buildQueryString(false,
StudentTable.TABLE_NAME, new String[] { StudentTable.STATE,
colName }, null, StudentTable.STATE, null, null, null);

System.out.println(query);
c = sqdb.rawQuery(query, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.STATE);
 int colid2 = c.getColumnIndex(colName);

}

 Now, it is again crucial to understand the structure of a GROUPBY query, as it
is unlike any of the previous clauses or filters that we have seen. The structure
is as follows:

SELECT your_column, aggregate_function(your_column) FROM your_table
GROUP BY your_column

Chapter 3

[59]

The trickiest part is in the aggregate_function(your_column) segment of the
query. In our case, we use what's known as the COUNT() function in SQL, which, as its
name suggests, simply counts the number of rows returned in a query (or subquery)
and returns the counted value. You can use any number of aggregate_functions in
SQL, but for now let's stick with COUNT() and later when we discuss SQL Functions,
I'll list out some of the others.

The idea here is simple – first we're selecting a column to group our data by (in
our case, by state), and then we're telling the query to return two columns: the first
is simply the states themselves, and the second is the number of times that state
appears in our table (that is, the aggregate number of states in our table). You'll also
notice that in both the second and third methods, the way the GROUPBY query is
done is pretty simple, but the only tricky part is specifying the column name with
the COUNT() function wrapped around it (see how we declare the String colName).
Once you do that, the rest is straightforward and behaves just like a standard SELECT
query with columns! Note that the COUNT() function also takes a * as a parameter,
which simply returns a count of all the rows in the subtable.

And now, let's see what our output is:

And voila! Just as we expected – our queries return each state followed by their
respective frequencies!

HAVING filters and Aggregate functions
Now, with GROUPBY clauses come the HAVING filters. The HAVING filter is to be used
only with a GROUPBY clause, and taking the previous queries as an example, say we
want to group by the number of states in our table, but we only care about states that
appear a certain number of times. With the HAVING filter, we can essentially phrase
our query such that it groups by the number of states, and then only returns those
states having a total count greater or less than some value.

SQLite Queries

[60]

Let's take a look at the following code and pay close attention to how I structure
my query (it will look very similar to the GROUPBY query but with an extra filter
at the end):

/*
* HAVING Filter
*/

System.out.println("METHOD 1");

// METHOD #1 - SQLITEDATABASE RAWQUERY()
String colName = "COUNT(" + StudentTable.STATE + ")";

c = sqdb.rawQuery("SELECT " + StudentTable.STATE + ","
+ colName + " from " + StudentTable.TABLE_NAME + " GROUP BY "
+ StudentTable.STATE + " HAVING " + colName + " > 1", null);

while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.STATE);
 int colid2 = c.getColumnIndex(colName);

}

System.out.println("METHOD 2");

// METHOD #2 - SQLITEDATABASE QUERY()
c = sqdb.query(StudentTable.TABLE_NAME, new String[] {
StudentTable.STATE, colName }, null, null, StudentTable.STATE,
colName + " > 1", null);

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
query = SQLiteQueryBuilder.buildQueryString(false,
StudentTable.TABLE_NAME, new String[] { StudentTable.STATE,
colName }, null, StudentTable.STATE, colName + " > 1", null,
null);
System.out.println(query);
c = sqdb.rawQuery(query, null);

And so you have it. Again, notice the structure of my query in the first method and
notice how it translates into the HAVING parameter of the query convenience methods
in the second and third methods. Let's see now how the query did and whether or
not it eliminated AR from the output:

Chapter 3

[61]

Perfect – pretty straightforward. Earlier we ran into the COUNT() aggregate function,
which along with SUM() and AVG() are amongst the most popular of the aggregate
functions (see here for the full list: http://www.sqlite.org/lang_aggfunc.html).
These functions, like their names suggest, either count the total number of rows
returned in a particular column of your subtable, or sum of the values of that column
in your subtable, or average of the values of that column in your subtable, and so on.
First, let's examine some of these aggregate functions, listed as follows (notice how
the column names change):

/*
* SQL Functions - MIN/MAX/AVG
*/

System.out.println("METHOD 1");

// METHOD #1 - SQLITEDATABASE RAWQUERY()
String colName = "MIN(" + StudentTable.GRADE + ")";

c = sqdb.rawQuery("SELECT " + colName + " from " +
StudentTable.TABLE_NAME, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(colName);
 int minGrade = c.getInt(colid);
 System.out.println("MIN GRADE " + minGrade);
}

System.out.println("METHOD 2");

// METHOD #2 - SQLITEDATABASE QUERY()
colName = "MAX(" + StudentTable.GRADE + ")";

c = sqdb.query(StudentTable.TABLE_NAME, new String[]
{ colName }, null, null, null, null, null);

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
colName = "AVG(" + StudentTable.GRADE + ")";

http://www.sqlite.org/lang_aggfunc.html

SQLite Queries

[62]

query = SQLiteQueryBuilder.buildQueryString(false,
StudentTable.TABLE_NAME, new String[] { colName }, null,
null, null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(colName);
 double avgGrade = c.getDouble(colid);
 System.out.println("AVG GRADE " + avgGrade);
}

So, here we use each of the three methods to test out a different aggregate function.
The results are shown as follows:

After referencing the state of the table from earlier, you can quickly validate the
outputted numbers and confirm that the functions are indeed doing as they should.
Outside of aggregate functions (which are typically used for numerical-typed
columns), SQLite also provides you with an assortment of other core functions that
help you manipulate everything from Strings to Date types, and so on. A complete
list of these core functions can be found http://www.sqlite.org/lang_corefunc.
html but for now, let's just take a look at a couple:

/*
* SQL Functions - UPPER/LOWER/SUBSTR
*/

System.out.println("METHOD 1");

// METHOD #1 - SQLITEDATABASE RAWQUERY()
String colName = "UPPER(" + StudentTable.NAME + ")";

c = sqdb.rawQuery("SELECT " + colName + " from " +
StudentTable.TABLE_NAME, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(colName);

http://www.sqlite.org/lang_corefunc.html

Chapter 3

[63]

 String upperName = c.getString(colid);
 System.out.println("GOT STUDENT " + upperName);
}

System.out.println("METHOD 2");

// METHOD #2 - SQLITEDATABASE QUERY()
colName = "LOWER(" + StudentTable.NAME + ")";

c = sqdb.query(StudentTable.TABLE_NAME, new String[]
{ colName }, null, null, null, null, null);

System.out.println("METHOD 3");

// METHOD #3 - SQLITEQUERYBUILDER
colName = "SUBSTR(" + StudentTable.NAME + ",1,4)";

query = SQLiteQueryBuilder.buildQueryString(false,
StudentTable.TABLE_NAME, new String[] { colName }, null,
null, null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);

Again, here is the associated output of these core functions:

SQLite Queries

[64]

Now, as far as how much of a performance boost running some of these functions
in SQLite as opposed to just doing them on the Java side, this is debatable and is
highly dependent on the size of your database and the function you are calling.
For instance, some string manipulation functions may not offer as much of a
performance boost as other more complex aggregate functions. In fact, this SQLite to
Java comparison is something we'll look more into in the next section, but regardless,
it's always better to be aware of the functions available to you in SQLite and add
them to your arsenal of weapons!

And lastly, it's about time we looked at the benefits of using the SQLiteQueryBuilder
(until now, much of the syntax was very similar to just the query() method in
SQLiteDatabase) and see how we can leverage this convenience class to perform
more complicated joins:

/*
* SQL JOINS
*/

SQLiteQueryBuilder sqb = new SQLiteQueryBuilder();

// NOTICE THE SYNTAX FOR COLUMNS IN JOIN QUERIES
String courseIdCol = CourseTable.TABLE_NAME + "." +
CourseTable.ID;

String classCourseIdCol = ClassTable.TABLE_NAME + "." +
ClassTable.COURSE_ID;

String classIdCol = ClassTable.TABLE_NAME + "." +
ClassTable.ID;

sqb.setTables(ClassTable.TABLE_NAME + " INNER JOIN " +
CourseTable.TABLE_NAME + " ON (" + classCourseIdCol + " = "
+ courseIdCol + ")");

String[] cols = new String[]
{ classIdCol, ClassTable.COURSE_ID, CourseTable.NAME };

query = sqb.buildQuery(cols, null, null, null, null,
null, null);

System.out.println(query);
c = sqdb.rawQuery(query, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(0);
 int colid2 = c.getColumnIndex(cols[1]);
 int colid3 = c.getColumnIndex(cols[2]);
 int rowId = c.getInt(colid);
 int courseId = c.getInt(colid2);
 String courseName = c.getString(colid3);
 System.out.println(rowId + " || COURSE ID " + courseId + "
 || " + courseName);
}

Chapter 3

[65]

First, let me point out a couple of things specific to JOIN statements. In essence, a
JOIN statement allows you to connect two tables based on some column values. For
example, in our case, our schema was built so that we would have a table for classes
and each class would be a mapping between the student ID and the course ID. But,
let's say that we want to quickly know not just what the class mappings are but
also the course's name for each mapping (that is, the name of the course and who is
taking that class). Instead of having to return all the class mappings as well as the
course listings (that is, asking for two tables back) and then manually doing these
lookups, we can use an SQL JOIN statement to return a joint table.

Now, because when doing JOIN statements we are asking for multiple tables back,
oftentimes when you ask for specific columns to return, you'll need to specify what
table the column comes from. For instance, consider a situation where both tables
have ID fields – in this case, simply asking for the ID column will cause an error, as
it's ambiguous which table's ID column you really want. This is what we're doing
when we initiate the strings courseIdCol, classIdCol, and classCourseIdCol,
and the syntax is simply as follows:

table_name.column_name

Then in our SQLiteQueryBuilder class, we use the method setTables() to format
our JOIN statement. Again, you can see the exact syntax that we used in the previous
example, but the general format is first you specify the two tables that you want to
join and then you tell the query what kind of JOIN you want (in our case, we want
to use an INNER JOIN). Afterwards, you need to tell the query what two columns to
perform the JOIN on, and again, in our case, we want to connect the two tables by
the course ID, and so we specify the course ID column of our Class table and also
specify the corresponding course ID column of our Course table. By doing this, the
JOIN statement knows that for each class mapping, it should take the course ID and
then go to the Course table and find that corresponding course ID and append that
row of the table to the Class table. For an in-depth discussion on both the different
kinds of JOINs as well as the syntax for each, I invite you to look at http://www.
w3schools.com/sql/sql_join.asp and read through the documentation. The
output for the previous JOIN statement is as follows:

And so you can immediately see both the syntax of the query as well as the results.

http://www.w3schools.com/sql/sql_join.asp
http://www.w3schools.com/sql/sql_join.asp

SQLite Queries

[66]

SQL vs. Java performance comparisons
So just how powerful and efficient is the SQL language? In the previous two
sections, we explored both basic and more advanced features of SQL – all of whose
functionality (in theory) could be mimicked with just Java (that is, just do a bare-bones
SELECT statement to get back the entire table and parse it with Java if statements, and
so on). However, it's time to explore if there's an actual added advantage to filtering
and manipulating our data on the SQLite end (as opposed to on the Java end), and if
so, how much of an advantage it provides. And so, to start, we'll need a much bigger
data set to better illustrate the improvements in performance.

First, we create a new table under a new schema which simply has a column for
name, state, and income – think of this as a United States database with each family's
name, the state they live in, and their family income. The table has 17,576 rows – still
not a lot considering the magnitude of some real application tables – but hopefully
this test table will illustrate some of these performance differences. Let's begin with
the WHERE filter:

public class PerformanceActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 TestSchemaHelper sch = new TestSchemaHelper(this);
 SQLiteDatabase sqdb = sch.getWritableDatabase();

 // TEST WHERE FILTER PERFORMANCE //

 // SQL OPTIMIZED
 long start = System.nanoTime();
 String query = SQLiteQueryBuilder.buildQueryString(false,
 TestTable.TABLE_NAME, new String[] { TestTable.NAME },
 TestTable.INCOME + " > 500000", null, null, null, null);
 System.out.println(query);
 Cursor c = sqdb.rawQuery(query, null);
 int numRows = 0;
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(TestTable.NAME);
 String name = c.getString(colid);
 numRows++;
 }
 System.out.println("RETRIEVED " + numRows);

Chapter 3

[67]

 System.out.println((System.nanoTime() - start) / 1000000 + "
 MILLISECONDS");
 c.close();

 // JAVA OPTIMIZED
 start = System.nanoTime();
 query = SQLiteQueryBuilder.buildQueryString(false,
 TestTable.TABLE_NAME, new String[] { TestTable.NAME,
 TestTable.INCOME }, null, null, null, null, null);
 System.out.println(query);
 c = sqdb.rawQuery(query, null);
 numRows = 0;
 while (c.moveToNext()) {
 int colid = c.getColumnIndex(TestTable.NAME);
 int colid2 = c.getColumnIndex(TestTable.INCOME);
 String name = c.getString(colid);
 int income = c.getInt(colid2);
 if (income > 500000) {
 numRows++;
 }
 }
 System.out.println("RETRIEVED " + numRows);
 System.out.println((System.nanoTime() - start) / 1000000 +
 " MILLISECONDS");
 c.close();
}
}

On the SQLite side, we're simply using a WHERE filter which returns to us all families
in our table that have a family income of over 500,000. On the Java side, we get back
the entire table and loop through each row and use an if statement to perform the
same filtering. We can verify that the outputted rows are the same, and at the same
time look at the speeds of the two methods for comparison:

SQLite Queries

[68]

So we see that here there's almost a 5x boost in performance! Next, let's take a look
at the performance boost gained when using the GROUPBY clause. On the SQLite
side, we'll simply be doing a GROUPBY statement on the states column and will ask to
count up how many families are from each state. Then, on the Java side, we'll ask for
the whole table back and manually go through each row, using a standard Map object
to keep track of each state and its respective count as follows:

// TEST GROUP BY PERFORMANCE //

// SQL OPTIMIZED
start = System.nanoTime();
String colName = "COUNT(" + TestTable.STATE + ")";
query = SQLiteQueryBuilder.buildQueryString(false, TestTable.
TABLE_NAME, new String[] { TestTable.STATE,
colName }, null, TestTable.STATE, null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);
while (c.moveToNext()) {
 int colid = c.getColumnIndex(StudentTable.STATE);
 int colid2 = c.getColumnIndex(colName);
 String state = c.getString(colid);
 int count = c.getInt(colid2);
 System.out.println("STATE " + state + " HAS COUNT " +
 count);
}
System.out.println((System.nanoTime() - start) / 1000000 + "
MILLISECONDS");
c.close();

// JAVA OPTIMIZED
start = System.nanoTime();
query = SQLiteQueryBuilder.buildQueryString(false, TestTable.
TABLE_NAME, new String[] { TestTable.STATE },
null, null, null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);
Map<String, Integer> map = new HashMap<String, Integer>();
while (c.moveToNext()) {
 int colid = c.getColumnIndex(TestTable.STATE);
 String state = c.getString(colid);
 if (map.containsKey(state)) {
 int curValue = map.get(state);
 map.put(state, curValue + 1);
 } else {

Chapter 3

[69]

 map.put(state, 1);
 }
}

for (String key : map.keySet()) {
 System.out.println("STATE " + key + " HAS COUNT " + map.
 get(key));
}
System.out.println((System.nanoTime() - start) / 1000000 + "
MILLISECONDS");
c.close();

And let's see how well we did:

So we see that in this case, the performance boost was there but less noticeable,
giving us a 33 percent boost in efficiency. It's important to note that these stated
statistics are highly dependent on the schema and size of your tables, so take these
numbers with a grain of salt. However, the goal of these little experiments is to just
give us an idea of how these two methodologies compare. Lastly, let's take a look at
how a built-in aggregate function like avg() in SQL compares with Java. The code
for both methodologies is as follows:

// TEST AVERAGE PERFORMANCE //

// SQL OPTIMIZED
start = System.nanoTime();
colName = "AVG(" + TestTable.INCOME + ")";
query = SQLiteQueryBuilder.buildQueryString(false,
TestTable.TABLE_NAME, new String[] { colName }, null, null,
null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);
while (c.moveToNext()) {

SQLite Queries

[70]

 int colid = c.getColumnIndex(colName);
 double avgGrade = c.getDouble(colid);
 System.out.println("AVG INCOME " + avgGrade);
}
System.out.println((System.nanoTime() - start) / 1000000 + "
MILLISECONDS");
c.close();

// JAVA OPTIMIZED
start = System.nanoTime();
colName = TestTable.INCOME;
query = SQLiteQueryBuilder.buildQueryString(false,
TestTable.TABLE_NAME, new String[] { colName }, null, null,
null, null, null);
System.out.println(query);
c = sqdb.rawQuery(query, null);
double sumIncomes = 0.0;
double numIncomes = 0.0;
while (c.moveToNext()) {
 int colid = c.getColumnIndex(colName);
 int income = c.getInt(colid);
 sumIncomes += income;
 numIncomes++;
}

System.out.println("AVG INCOME " + sumIncomes / numIncomes);
System.out.println((System.nanoTime() - start) / 1000000 + "
MILLISECONDS");
c.close();

And taking a quick look at what the output gives us:

And wow – enough said. The results for both methods are the same, but when using
the SQL function you saw a 16x gain in performance.

Chapter 3

[71]

Summary
In this chapter, we started by focusing on the Android OS and by looking at what
types of query methods are at your disposal. We saw that there are three well-known
ways to interact with the SQLite database, some more 'convenient' than the others,
and some more flexible and powerful than the others.

However, we also saw that though each method had its pros and cons, all three
query methods could ultimately perform the same kinds of queries, just using
different sets of syntax or using different sets of parameters. This is when we moved
away from the methods themselves and focused more on the query itself, starting
with simple queries, which ranged from the most basic SELECT queries to more
involved queries that allowed you to specify specific columns and rows. And later,
we talked about more advanced queries, which ranged from ORDERBY and GROUPBY
queries to the most complex and involved JOIN statements.

And lastly, being the curious and performance-minded programmers that we are,
we spent the last section comparing the speeds of SQL and Java – implementing
a variety of queries in both SQL and Java and then running them to look at the
respective speeds. We saw that in each case, being able to embed your desired
functionality into an SQL query granted you a performance boost when compared
to executing that same functionality in Java (in one case it gave us as much as a
16x performance boost). And so, the moral of the story for this section is that when
possible, find ways to manipulate your data on the SQL side as opposed to the Java
side, as it will help you optimize speed as well as memory usage!

But before moving on, let's take a second to synthesize what we've learned so far.
Earlier in Chapter 2, Using a SQLite Database, we learned about implementing SQLite
database schemas in your Android application, and just now we learned about all
the different features that are built into SQL which ultimately allow you to work
with your data in extremely powerful, efficient ways. But now, what if you want to
tap into existing data on the user's Android device? Each Android device contains a
wealth of data, much of which is available for external applications to query, and so
it's important to keep this in mind when developing your application. Furthermore,
what if you want to expose your database and schemas to other applications? What
if you're building a task list application and you want to allow other applications
(perhaps calendar-based applications) to query for the user's existing tasks? All of
these things are done through what's called a ContentProvider, and it's in the next
two chapters that we flush out this extremely important class in Android.

Using Content Providers
We've accomplished a lot so far in this book! In just three chapters, we've looked at
data storage mechanisms ranging from the simple, unassuming SharedPreferences
class, to the powerful and complex SQLite database, equipped with a variety of
query methods and classes that leverage the equally powerful language of SQL.

However, let's say that you've mastered the last three chapters and you've
successfully built from scratch a database schema for your application that is now
live in the market. Now, let's say you want to create a second application that
extends the functionality of the first and requires access to your original application's
database. Or perhaps you don't need to create a second application, but you simply
want to better market your application by making available your database for
external applications to access and integrate into their own.

Or, maybe you never even wanted to build your own database, but instead just
wanted to tap into the wealth of data already existing on each Android device, and
which is readily available for querying! In this chapter, we'll learn how to do all
these things with the ContentProvider class, and at the end we'll spend some time
brainstorming practical use cases of why you might benefit from exposing your
database schema through a ContentProvider.

ContentProvider
Let's start with the question: What exactly is a ContentProvider? And why do I
need to interact with this ContentProvider?

A ContentProvider is essentially an interface that sits between the developer and
the database schema where the desired data sits. Why is this intermediary interface
necessary? Consider the following (true) scenario:

Using Content Providers

[74]

In the Android OS, a user's contact list (this includes phone numbers, addresses,
birthdays, and numerous other data fields pertaining to a contact) is stored in a
fairly complex database schema on the user's device. Consider a scenario where
as a developer, I'd like to query this schema for a user's contacts' phone numbers.

Think about how inconvenient it would be for me to have to learn the entire
database's schema just to access one or two fields? Or how inconvenient it would
be if every time Google updated the Android OS and tweaked the contact schema
(and believe me, this has happened several times already), I had to relearn the
schema and restructure my query subsequently?

It's for these reasons that such an intermediary exists—so that instead of having
to interact directly with the schema, one only needs to query through the content
provider. Now, on that note, each time Google updates its contact schema, they need
to make sure they re-tweak their implementation of the Contacts content provider;
otherwise our queries through the content provider may fail.

Said another way, much of this chapter and its implementation of the
ContentProvider class is going to remind you of what we did earlier when writing
convenience methods for our database. If you so choose to expose your data through
a content provider, you will need to define how an external application can query
your data, how an external application can insert new data or update existing data,
and so on. These will all be methods that you'll need to override and implement.

But now let's be a little more discreet. There are many parts and pieces in
implementing a content provider from start to finish, so to start, let's begin by laying
out this section and looking at all of these pieces:

•	 Defining the data model (which is typically a SQLite database, which then
extends the ContentProvider class)

•	 Defining its Uniform Resource Identifier (URI)
•	 Declaring the content provider in the Manifest file
•	 Implementing the abstract methods (query(), insert(), update(),

delete(), getType(), and onCreate()) of ContentProvider

Now, let's start with defining the data model. Typically, the data model resembles
that of a SQLite database (although it doesn't necessarily have to), which then simply
extends the ContentProvider class. For my example, I've chosen to implement a
pretty simple database schema consisting of just one table—a citizens table, meant
to replicate a standard database that keeps track of a list of people who all have a
unique ID (think social security ID), a name, a registered state, and in my case a
reported income. Let's first define this CitizensTable class and its schema:

Chapter 4

[75]

public class CitizenTable {
 public static final String TABLE_NAME = "citizen_table";
 /**
 * DEFINE THE TABLE
 */
 // ID COLUMN MUST LOOK LIKE THIS
 public static final String ID = "_id";
 public static final String NAME = "name";
 public static final String STATE = "state";
 public static final String INCOME = "income";
 /**
 * DEFINE THE CONTENT TYPE AND URI
 */
 // TO BE DISCUSSED LATER. . .
}

Pretty straightforward. Now let's create a class that extends the SQLiteOpenHelper
class (just like we did earlier in the previous chapter), but this time we'll declare it as
an inner class where the outer class extends the ContentProvider class:

public class CitizenContentProvider extends ContentProvider {
 private static final String DATABASE_NAME = "citizens.db";
 private static final int DATABASE_VERSION = 1;
 public static final String AUTHORITY =
 "jwei.apps.dataforandroid.ch4.CitizenContentProvider";
 // OVERRIDE AND IMPLEMENT OUR DATABASE SCHEMA
 private static class DatabaseHelper extends SQLiteOpenHelper{
 DatabaseHelper(Context context) {
 super(context,DATABASE_NAME,null,DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 // CREATE INCOME TABLE
 db.execSQL("CREATE TABLE " + CitizenTable.TABLE_NAME +
 " (" + CitizenTable.ID + " INTEGER PRIMARY KEY
 AUTOINCREMENT," + CitizenTable.NAME + " TEXT," +
 CitizenTable.STATE + " TEXT," + CitizenTable.INCOME +
 " INTEGER);");
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion,
 int newVersion) {

Using Content Providers

[76]

 Log.w("LOG_TAG", "Upgrading database from version " +
 oldVersion + " to " + newVersion +
 ", which will destroy all old data");
 // KILL PREVIOUS TABLES IF UPGRADED
 db.execSQL("DROP TABLE IF EXISTS " +
 CitizenTable.TABLE_NAME);
 // CREATE NEW INSTANCE OF SCHEMA
 onCreate(db);
 }
 }

 private DatabaseHelper dbHelper;
 // NOTE THE DIFFERENT METHODS THAT NEED TO BE IMPLEMENTED
 @Override
 public boolean onCreate() {
 // . . .
 }
 @Override
 public int delete(Uri uri, String where, String[] whereArgs){
 // . . .
 }
 @Override
 public String getType(Uri uri) {
 // . . .
 }
 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 // . . .
 }
 @Override
 public Cursor query(Uri uri, String[] projection, String
 selection, String[] selectionArgs, String sortOrder) {
 // . . .
 }
 @Override
 public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs) {
 // . . .
 }
}

Chapter 4

[77]

You don't have to declare your SQLite database as an inner class—for me, it just
makes the implementation a little easier and everything is nicely in one place. In
any case, you'll notice that the implementation of the data model itself is exactly the
same as before—override the onCreate() method and create your table, and then
override the onUpdate() method and drop/recreate the table. In the skeleton we just
saw, you'll also see the various methods that need to be implemented as a result of
extending the ContentProvider class (this we will get into in the next section).

The only thing different about the code we just saw is the inclusion of the string:

public static final String AUTHORITY =
 "jwei.apps.dataforandroid.ch4.CitizenContentProvider";

This authority is what identifies the provider—not necessarily the path. What I mean by
this is that later on we'll see how you can define the entire path (this is known as the
URI) to direct the query to the correct locations in your database schema.

In our content provider, we'll let developers query our database in one of two ways:

content://jwei.apps.dataforandroid.ch4.CitizenContentProvider/citizen

content://jwei.apps.dataforandroid.ch4.CitizenContentProvider/
citizen/#

Those are the two fully specified paths that we'll register in our content provider,
and based on which path the developer requests, the content provider will know
how to query our database. So what do these mean—notice that both start with the
prefix content://, which is simply the standard prefix that tells the object this is a
URI that points to a content provider (just as how http:// tells the browser the path
is pointing to a web page).

After the prefix we specify the authority so that the object knows which content
provider to go to, and after that we have the suffixes /citizen and /citizen/#.
The former we will simply define as the base query—the developer is just issuing a
standard query and will pass any filters in the query() method. The second is for
situations where the developer already knows the ID of the citizen (that is, the social
security ID) and just wants to get a specific row of the table. Instead of forcing the
developer to pass a WHERE filter with the ID, we can simplify things and allow the
developer to specify the WHERE filter in the form of a path.

Using Content Providers

[78]

Now, in case all of this still sounds confusing, the most intuitive analogy to this
would likely be: When you register an internet domain, you must specify a base
URL, and once registered, the browser will know how to find the location of other
files relative to this base URL. Likewise, in our case, we specify in the Android
manifest (the motherboard of our application) that we want to expose a content
provider and we define the path to it. Once registered, anytime a developer wants to
reach our content provider, he/she must specify this base URI (that is, the authority),
and furthermore he/she will need to specify what kind of query they are making
by completing the path of the URI. For more on how the ContentProvider URI is
defined, I invite you to check out:

http://developer.android.com/guide/topics/providers/content-
providers.html#urisum

But for now, let's take a quick look at how you would declare your provider
in the Android manifest file, and afterwards let's move on to the meat of the
implementation, which is in overriding the abstract methods:

<?xml version="1.0" encoding="utf-8"?>
<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="jwei.apps.dataforandroid"
 android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon"
 android:label="@string/app_name">
 <provider
 android:name=
 "jwei.apps.dataforandroid.ch4.CitizenContentProvider"
 android:authorities=
 "jwei.apps.dataforandroid.ch4.CitizenContentProvider"/>
 </application>
</manifest>

Again, pretty straightforward. All you need to do is define a name and authority
for your content provider—in fact, the Manifest file will complain if you give an
improper base URI as your authority, so as long as it compiles you know you're
good to go! Now, let's move on to the more complex implementation of your
content provider.

Chapter 4

[79]

Implementing the query method
Now that we've built the data model, defined the table's authority and URI, and
successfully declared it in our Android manifest file, it's time to write the bulk of
the class and implement its six abstract methods. We'll begin with the onCreate()
and query() methods:

public class CitizenContentProvider extends ContentProvider {
 private static final String DATABASE_NAME = "citizens.db";
 private static final int DATABASE_VERSION = 1;
 public static final String AUTHORITY =
 "jwei.apps.dataforandroid.ch4.CitizenContentProvider";
 private static final UriMatcher sUriMatcher;
 private static HashMap<String, String> projectionMap;

 // URI MATCH OF A GENERAL CITIZENS QUERY
 private static final int CITIZENS = 1;

 // URI MATCH OF A SPECIFIC CITIZEN QUERY
 private static final int SSID = 2;

 private static class DatabaseHelper extends SQLiteOpenHelper {
 // . . .
 }

 private DatabaseHelper dbHelper;
 @Override
 public boolean onCreate() {
 // HELPER DATABASE IS INITIALIZED
 dbHelper = new DatabaseHelper(getContext());
 return true;
 }

 @Override
 public int delete(Uri uri, String where, String[] whereArgs){
 // . . .
 }
 @Override
 public String getType(Uri uri) {
 // . . .
 }

Using Content Providers

[80]

 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 // . . .
 }

 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs, String sortOrder) {
 SQLiteQueryBuilder qb = new SQLiteQueryBuilder();
 qb.setTables(CitizenTable.TABLE_NAME);
 switch (sUriMatcher.match(uri)) {
 case CITIZENS:
 qb.setProjectionMap(projectionMap);
 break;
 case SSID:
 String ssid =
 uri.getPathSegments().
 get(CitizenTable.SSID_PATH_POSITION);
 qb.setProjectionMap(projectionMap);
 // FOR QUERYING BY SPECIFIC SSID
 qb.appendWhere(CitizenTable.ID + "=" + ssid);
 break;
 default:
 throw new IllegalArgumentException
 ("Unknown URI " + uri);
 }
 SQLiteDatabase db = dbHelper.getReadableDatabase();
 Cursor c = qb.query(db, projection, selection,
 selectionArgs, null, null, sortOrder);
 // REGISTERS NOTIFICATION LISTENER WITH GIVEN CURSOR
 // CURSOR KNOWS WHEN UNDERLYING DATA HAS CHANGED
 c.setNotificationUri(getContext().getContentResolver(),
 uri);
 return c;
 }

 @Override
 public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs) {
 // . . .
 }
 // INSTANTIATE AND SET STATIC VARIABLES
 static {

Chapter 4

[81]

 sUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 sUriMatcher.addURI(AUTHORITY, "citizen", CITIZENS);
 sUriMatcher.addURI(AUTHORITY, "citizen/#", SSID);
 // PROJECTION MAP USED FOR ROW ALIAS
 projectionMap = new HashMap<String, String>();
 projectionMap.put(CitizenTable.ID, CitizenTable.ID);
 projectionMap.put(CitizenTable.NAME, CitizenTable.NAME);
 projectionMap.put(CitizenTable.STATE, CitizenTable.STATE);
 projectionMap.put(CitizenTable.INCOME,
 CitizenTable.INCOME);
 }
}

So let's just get the easy stuff out of the way first. You'll notice first off that after we
define our SQLite database (by extending the SQLiteOpenHelper class), we declare
a global DatabaseHelper variable and initialize it in our onCreate() method. The
onCreate() method is called automatically after a request to open our particular
content provider is made by an activity (through the use of a ContentResolver
object, which we'll talk about later as well). Of course, any other initialization should
go here, but in our case, all we want to do is initialize a connection to our database.

Once that's done, let's take a look at those static variables we've declared at the end.
What the projectionMap does is it allows you to alias your columns. In most content
providers, this mapping will seem a little meaningless, as you're simply telling the
content provider to map your table's columns onto themselves (as we are doing in
the implementation of the onCreate() and query() methods, which we just saw).
However, there are certain instances where for more complex schemas (that is, ones
with joint tables), being able to rename and alias your table's columns can make
accessing your content provider's data much more intuitive.

Now, remember the two paths we talked about earlier (that is, /citizen and /
citizen/#)? Well, all we're doing here is instantiating an UriMatcher object which
allows us to define those paths through the method addURI().

At a high level, what this method does is define a set of mappings—it's telling our
ContentProvider class that any queries with path /citizen should be mapped to
any behavior specified with the CITIZENS flag. Likewise, any queries with the path
/citizen/# should be mapped to those behaviors specified by the SSID flag (these
flags were both defined at the top of the class). Having this functionality can be
useful for the developer as it allows him to efficiently query for a citizen if his/her ID
is known ahead of time.

Using Content Providers

[82]

These flags then typically appear in switch statements, so now we'll focus our
attention onto the query() method. It starts by initiating a SqliteQueryBuilder
class (which we spent a great deal of time looking at in our previous chapter), and
from there it uses our UriMatcher object to match the passed-in URI. In other words,
what the UriMatcher is doing is looking at the requested path and first figuring
out if it's a valid path (if not, we throw an exception with error unknown URI). Once
it sees that the developer has submitted a valid URI, it then returns that path's
associated flag (that is, CITIZENS or SSID in our case), at which point we can use a
switch statement to navigate to the proper functionality.

Once you understand what's happening at a high level, the rest should be pretty
straightforward and familiar by now. If the user just submitted a general query (that
is, with the CITIZENS flag), then all we need to do is define the projection map and
the table name that will be queried. And again, if the user wants to go directly to a
row in our table, then by specifying the social security ID in the path, we can parse
that citizen out with the line:

String ssid =
 uri.getPathSegments().get(CitizenTable.SSID_PATH_POSITION);

Don't worry too much about the SSID_PATH_POSITION variable—all we're doing
here is taking the passed-in URI and breaking it into its path segments. Once
we have the path segments, we're going to get the first one (and subsequently
SSID_PATH_POSITION is set to 1 as we'll see soon), as in our example we only
ever have one path segment passed in.

Now, once we have the desired social security ID that was passed into the query,
all we need to do is append it to a WHERE filter and the rest is just stuff we've
seen before—getting the readable database, and filling in the query() method of
SQLiteDatabase.

The last thing I'll mention is that after the query has been successfully made and we
get back our Cursor pointing at the data, since we are exposing our content provider
to all external applications on the device, there is a chance that multiple applications
may be accessing our database simultaneously, in which case our data is subject to
change. Because of this, we tell our returned Cursor to listen for any changes that are
made to its underlying data, so that when a change is made, the Cursor will know to
update itself and subsequently any UI components that may use our Cursor.

Implementing the delete and update methods
Hopefully, everything makes sense at this point, so let's move on to the
delete() and update() methods, which will look very similar to the
query() method in structure:

Chapter 4

[83]

public class CitizenContentProvider extends ContentProvider {
 private static final String DATABASE_NAME = "citizens.db";
 private static final int DATABASE_VERSION = 1;
 public static final String AUTHORITY =
 "jwei.apps.dataforandroid.ch4.CitizenContentProvider";
 private static final UriMatcher sUriMatcher;
 private static HashMap<String, String> projectionMap;

 // URI MATCH OF A GENERAL CITIZENS QUERY
 private static final int CITIZENS = 1;

 // URI MATCH OF A SPECIFIC CITIZEN QUERY
 private static final int SSID = 2;

 private static class DatabaseHelper extends SQLiteOpenHelper {
 // . . .
 }
 private DatabaseHelper dbHelper;
 @Override
 public boolean onCreate() {
 // HELPER DATABASE IS INITIALIZED
 dbHelper = new DatabaseHelper(getContext());
 return true;
 }

 @Override
 public int delete(Uri uri, String where, String[] whereArgs) {
 SQLiteDatabase db = dbHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case CITIZENS:
 // PERFORM REGULAR DELETE
 count = db.delete(CitizenTable.TABLE_NAME, where,
 whereArgs);
 break;
 case SSID:
 // FROM INCOMING URI GET SSID
 String ssid =
 uri.getPathSegments().
 get(CitizenTable.SSID_PATH_POSITION);
 // USER WANTS TO DELETE A SPECIFIC CITIZEN
 String finalWhere = CitizenTable.ID+"="+ssid;
 // IF USER SPECIFIES WHERE FILTER THEN APPEND
 if (where != null) {

Using Content Providers

[84]

 finalWhere = finalWhere + " AND " + where;
 }
 count = db.delete(CitizenTable.TABLE_NAME,
 finalWhere, whereArgs);
 break;
 default:
 throw new IllegalArgumentException
 ("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }

 @Override
 public String getType(Uri uri) {
 // . . .
 }

 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 // . . .
 }

 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs, String sortOrder) {
 // . . .
 }

 @Override
 public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs) {
 SQLiteDatabase db = dbHelper.getWritableDatabase();
 int count;
 switch (sUriMatcher.match(uri)) {
 case CITIZENS:
 // GENERAL UPDATE ON ALL CITIZENS
 count = db.update(CitizenTable.TABLE_NAME, values,
 where, whereArgs);
 break;
 case SSID:
 // FROM INCOMING URI GET SSID
 String ssid =

Chapter 4

[85]

 uri.getPathSegments().
 get(CitizenTable.SSID_PATH_POSITION);
 // THE USER WANTS TO UPDATE A SPECIFIC CITIZEN
 String finalWhere = CitizenTable.ID+"="+ssid;
 if (where != null) {
 finalWhere = finalWhere + " AND " + where;
 }
 // PERFORM THE UPDATE ON THE SPECIFIC CITIZEN
 count = db.update(CitizenTable.TABLE_NAME, values,
 finalWhere, whereArgs);
 break;
 default:
 throw new IllegalArgumentException
 ("Unknown URI " + uri);
 }
 getContext().getContentResolver().notifyChange(uri, null);
 return count;
 }
 // INSTANTIATE AND SET STATIC VARIABLES
 static {
 // . . .
 }
}

And so we see that the logic behind these two statements very much follows that of
the query() method. We see that in the delete() method, we first get our writable
database (note that in this case we don't need the help of a SQLiteQueryBuilder,
as we are deleting something and not querying for anything), and then we direct
the passed-in URI to our UriMatcher. Once the UriMatcher validates the path, it
then directs it to the appropriate flag, at which point we can vary the functionality
accordingly.

In our case, any queries with the CITIZEN path specification just become a standard
delete() statement, while those with the SSID path specification become a
delete() statement with an additional WHERE filter on the ID column of the table.
Again, the intuition here is that we are deleting a specific citizen from our database.
Look at the following snippet of code:

String finalWhere = CitizenTable.ID+"="+ssid;
// IF USER SPECIFIES WHERE FILTER THEN APPEND
if (where != null) {
 finalWhere = finalWhere + " AND " + where;
}

Using Content Providers

[86]

Note how we're appending the ID filter onto whatever original WHERE filter the
user may have specified. It's important to remember details like this in your
implementation—namely, that the developer may have passed in additional
arguments along with the ID in the path specification, so your final WHERE filter
should take all of these into consideration. The only detail left is in the line:

getContext().getContentResolver().notifyChange(uri, null);

Here what we're doing is requesting for the Context and the ContentResolver that
made this call, and notifying it that a change to its underlying data was successfully
made. Why this is important will become clearer when we talk about how to bind
Cursors to the UI, but for now consider a situation where in your activity, you
display the rows of the data as a list. Naturally, every time something alters a row of
the data in the underlying database, you'd want your list to reflect those changes, so
this is why we need to notify those changes made at the end of our methods.

Now, I won't say much about the update() method as the logic is identical to that
of the delete() method—the only difference is in the calls made by the writable
SQLite database that you get. So, let's push onwards and finish our implementation
with the getType() and insert() methods!

Implementing the insert and getType methods
It's time to implement our final two methods and complete our ContentProvider
implementation. Let's take a look:

public class CitizenContentProvider extends ContentProvider {
 private static final String DATABASE_NAME = "citizens.db";
 private static final int DATABASE_VERSION = 1;
 public static final String AUTHORITY =
 "jwei.apps.dataforandroid.ch4.CitizenContentProvider";
 private static final UriMatcher sUriMatcher;
 private static HashMap<String, String> projectionMap;

 // URI MATCH OF A GENERAL CITIZENS QUERY
 private static final int CITIZENS = 1;

 // URI MATCH OF A SPECIFIC CITIZEN QUERY
 private static final int SSID = 2;

 private static class DatabaseHelper extends SQLiteOpenHelper {
 // . . .
 }

Chapter 4

[87]

 private DatabaseHelper dbHelper;
 @Override
 public boolean onCreate() {
 // . . .
 }

 @Override
 public int delete(Uri uri, String where, String[] whereArgs) {
 // . . .
 }

 @Override
 public String getType(Uri uri) {
 switch (sUriMatcher.match(uri)) {
 case CITIZENS:
 return CitizenTable.CONTENT_TYPE;
 case SSID:
 return CitizenTable.CONTENT_ITEM_TYPE;
 default:
 throw new IllegalArgumentException("Unknown URI "
 + uri);
 }
 }

 @Override
 public Uri insert(Uri uri, ContentValues initialValues) {
 // ONLY GENERAL CITIZENS URI IS ALLOWED FOR INSERTS
 // DOESN'T MAKE SENSE TO SPECIFY A SINGLE CITIZEN
 if (sUriMatcher.match(uri) != CITIZENS) { throw new
 IllegalArgumentException("Unknown URI " + uri); }
 // PACKAGE DESIRED VALUES AS A CONTENTVALUE OBJECT
 ContentValues values;
 if (initialValues != null) {
 values = new ContentValues(initialValues);
 } else {
 values = new ContentValues();
 }
 SQLiteDatabase db = dbHelper.getWritableDatabase();
 long rowId = db.insert(CitizenTable.TABLE_NAME,
 CitizenTable.NAME, values);
 if (rowId > 0) {
 Uri citizenUri =
 ContentUris.withAppendedId(CitizenTable.CONTENT_URI,
 rowId);

Using Content Providers

[88]

 // NOTIFY CONTEXT OF THE CHANGE
 getContext().getContentResolver().notifyChange(citizenUri,
 null);
 return citizenUri;
 }
 throw new SQLException("Failed to insert row into " + uri);
 }

 @Override
 public Cursor query(Uri uri, String[] projection,
 String selection, String[] selectionArgs, String sortOrder) {
 // . . .
 }
 @Override
 public int update(Uri uri, ContentValues values, String where,
 String[] whereArgs) {
 // . . .
 }
 // INSTANTIATE AND SET STATIC VARIABLES
 static {
 // . . .
 }
}

First, let's tackle the getType() method. This method simply returns the
Multipurpose Internet Mail Extensions (MIME) type of the data object requested
for a given URI, which really just means you are giving each row (or rows) of your
data a distinguishable data type. This then allows developers, if needed, the ability
to identify whether or not a Cursor pointing to your table is indeed retrieving valid
citizen objects. The rules behind specifying MIME types for your data are:

•	 vnd.android.cursor.item/ for a single record
•	 vnd.android.cursor.dir/ for multiple records

Subsequently, we'll define our MIME types in our CitizenTable class (which is also
where we define our columns and schema):

public class CitizenTable {
 public static final String TABLE_NAME = "citizen_table";
 /**
 * DEFINE THE TABLE
 */
 // . . .
 /**

Chapter 4

[89]

 * DEFINE THE CONTENT TYPE AND URI
 */

 // THE CONTENT URI TO OUR PROVIDER
 public static final Uri CONTENT_URI = Uri.parse("content://" +
 CitizenContentProvider.AUTHORITY + "/citizen");

 // MIME TYPE FOR GROUP OF CITIZENS
 public static final String CONTENT_TYPE =
 "vnd.android.cursor.dir/vnd.jwei512.citizen";

 // MIME TYPE FOR SINGLE CITIZEN
 public static final String CONTENT_ITEM_TYPE =
 "vnd.android.cursor.item/vnd.jwei512.citizen";

 // RELATIVE POSITION OF CITIZEN SSID IN URI
 public static final int SSID_PATH_POSITION = 1;
}

So now that we have our MIME types defined, the rest is simply passing the URI in
the UriMatcher (again) and returning the corresponding MIME type.

And last but not least, we have our insert() method. This method is slightly
different, but not significantly so. The only difference is that when inserting
something, it doesn't make sense to pass a SSID URI path (think about it – if you're
inserting a new citizen how could you possibly already have a desired social security
ID to pass into the URI). So in this case, if a URI that does not have the CITIZEN
path specification passed in, we throw an error. Otherwise, we proceed and simply
retrieve our writable database and insert the values into our content provider (this
we've seen before as well).

That's it! The goal is that after seeing the complete implementation, all the pieces tie
together and you start to understand, at least intuitively, what is happening in our
ContentProvider class. As long as this makes sense intuitively, the rest will follow
when you actually program and implement the content provider yourself!

Now, before moving on to practical reasons for exposing your data through a content
provider, let's take a quick look at how you would interact with a content provider
(let's just use ours for now) and subsequently introduce the ContentResolver class,
which we've seen come up a few times by now. This will seem quick for now, but
no worries—soon we will devote an entire chapter on querying the most commonly
used content provider: the Contacts content provider.

Using Content Providers

[90]

Interacting with a ContentProvider
At this point, we've successfully implemented our own content provider, which can
now be read, queried, and updated (assuming the proper permissions are granted) by
external applications! To interact with a content provider, the first step is to acquire
from your Context the associated ContentResolver. This class behaves very much
like a SQLiteDatabase class in the sense that it has your standard insert(), query(),
update(), and delete() methods (in fact, the syntax and parameters for the two
classes are extremely similar as well), but it's designed especially for interacting with
content providers through URIs that are passed in by the developer.

Let's take a look at how you would instantiate a ContentResolver within an
Activity class, and then insert and query for data using both path specifications:

public class ContentProviderActivity extends Activity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);
 ContentResolver cr = getContentResolver();
 ContentValues contentValue = new ContentValues();
 contentValue.put(CitizenTable.NAME, "Jason Wei");
 contentValue.put(CitizenTable.STATE, "CA");
 contentValue.put(CitizenTable.INCOME, 100000);
 cr.insert(CitizenTable.CONTENT_URI, contentValue);

 contentValue = new ContentValues();
 contentValue.put(CitizenTable.NAME, "James Lee");
 contentValue.put(CitizenTable.STATE, "NY");
 contentValue.put(CitizenTable.INCOME, 120000);
 cr.insert(CitizenTable.CONTENT_URI, contentValue);

 contentValue = new ContentValues();
 contentValue.put(CitizenTable.NAME, "Daniel Lee");
 contentValue.put(CitizenTable.STATE, "NY");
 contentValue.put(CitizenTable.INCOME, 80000);
 cr.insert(CitizenTable.CONTENT_URI, contentValue);

 // QUERY TABLE FOR ALL COLUMNS AND ROWS
 Cursor c = cr.query(CitizenTable.CONTENT_URI, null, null,
 null, CitizenTable.INCOME + " ASC");
 // LET THE ACTIVITY MANAGE THE CURSOR
 startManagingCursor(c);
 int idCol = c.getColumnIndex(CitizenTable.ID);

Chapter 4

[91]

 int nameCol = c.getColumnIndex(CitizenTable.NAME);
 int stateCol = c.getColumnIndex(CitizenTable.STATE);
 int incomeCol = c.getColumnIndex(CitizenTable.INCOME);
 while (c.moveToNext()) {
 int id = c.getInt(idCol);
 String name = c.getString(nameCol);
 String state = c.getString(stateCol);
 int income = c.getInt(incomeCol);
 System.out.println("RETRIEVED ||" + id + "||" + name +
 "||" + state + "||" + income);
 }
 System.out.println("-------------------------------");
 // QUERY BY A SPECIFIC ID
 Uri myC = Uri.withAppendedPath(CitizenTable.CONTENT_URI,
 "2");
 Cursor c1 = cr.query(myC, null, null, null, null);
 // LET THE ACTIVITY MANAGE THE CURSOR
 startManagingCursor(c1);
 while (c1.moveToNext()) {
 int id = c1.getInt(idCol);
 String name = c1.getString(nameCol);
 String state = c1.getString(stateCol);
 int income = c1.getInt(incomeCol);
 System.out.println("RETRIEVED ||" + id + "||" + name +
 "||" + state + "||" + income);
 }
 }
}

So what's going on here is we first insert three rows into our database, so that the
citizen table now looks like:

ID Name State Income
1 Jason Wei CA 100000
2 James Lee NY 120000
3 Daniel Lee NY 80000

From here, we use our content resolver to make a general query of our table (that is,
just passing in the basic URI path specification) in an order of increasing incomes.
Then, we use our content resolver to make a specific query using the SSID path
specification. To do this, we utilize the static method:

Uri myC = Uri.withAppendedPath(CitizenTable.CONTENT_URI, "2");

Using Content Providers

[92]

This transforms the base content URI from:

content://jwei.apps.dataforandroid.ch4.CitizenContentProvider/citizen

to the following:

content://jwei.apps.dataforandroid.ch4.CitizenContentProvider/
citizen/2

So, to validate our results, let's take a look at what was outputted:

From the previous screenshot, we can see that both queries indeed outputted the
correct rows of data!

Now, the only remaining thing I'll say about the previous example (as most of the
syntax and Cursor handling is identical to that of examples from previous chapters)
is regarding the method startManagingCursor(). In earlier chapters, you'll notice
that every time I open a Cursor through a query(), I have to make sure to close it at
the end of the Activity; otherwise, the OS will throw out various hanging Cursor
warnings. However, with the startManagingCursor() convenience method, the
Activity will manage the life cycle of the Cursor for you—making sure to close it
before the Activity destroys itself, and so on. In general, it's a good idea to allow
the Activity to manage your Cursors for you.

Practical use cases
So, now that you know how to both implement and access a content provider,
you might be scratching your head and thinking to yourself: Why would I ever
need to do this?

What practical use cases are there for a content provider that would motivate you to
go through the extra hassle of building a content provider instead of just extending a
SQLiteOpenHelper and writing some convenience methods?

Well, one thing that is unique about the ContentProvider is that it allows you to
expose your data to all external applications, and so we can start our brainstorming
from there. Let's say you're running a small (or large) startup and you've developed
an application that allows the user to look up restaurants and book reservations.

Chapter 4

[93]

Now, sensibly, your application will most likely store these booked reservations in
some kind of database, so that the user can see what reservations they made previously
each time they open the application. But, say you expose your content provider and
turn it into a local API (perhaps for some it's easiest to just think of a content provider
as such)—in this case, other applications, perhaps a calendar application or a tasks list
application, could develop some special functionality that allows them to sync their
calendars and/or tasks with that user's restaurant reservations!

In this example, you have two applications, both with their own specific
functionalities, leveraging the power of content providers to provide the user with a
great experience (and happy users mean happy reviews for your application)!

Let's brainstorm one more example before we wrap up this chapter and move on
to the next. One of the great things about the Android OS (and about Google in
general) is the search functionality! As a result, within the Android OS, there's a
native Quick Search application, which typically appears as a widget on the home
screen of the device (see http://developer.android.com/resources/articles/
qsb.html for more).

This Quick Search widget is especially cool because of how it allows you to search
through any and all databases that declare themselves as searchable. And what
prerequisites are there for making your database searchable? You guessed it—it has
to be through a content provider. Again, it's only through exposing your data with
a content provider that any application (whether native or third party) can read and
access your database.

And so, say you are writing a texting application, and as a result you maintain a
content provider that stores all of the most recent texts you've had with your friends.
One neat feature you could add is to declare your content provider as searchable
and then specify in your content provider what fields the search is to be done over
(in this case, it would likely be the field containing the body of the text). Once you've
done this, the user can quickly use the home screen's search widget and seamlessly
maneuver through their texts with their friends!

At the end of the day, the principles and concepts behind the content provider are
simple, and implementing is just half of the work — the other half is being creative
and thinking of innovative and useful applications for your content provider.

Using Content Providers

[94]

Summary
In this chapter, we went into great detail about both what a ContentProvider is and
how it is implemented, and as a result we saw a lot of code. However, conceptually,
the ContentProvider is fairly simple—you first define an inner class that extends
the SQLiteOpenHelper, and from there you specify how that SQLite database
should be queried and/or modified, based on the instructions that are passed into
each method. These instructions come in the form of URIs, and so in each method
you're going to parse the different paths of the URI and perform the appropriate
functionality.

We then quickly saw how you could interact with your new content provider (or any
content provider, in fact) through the use of a ContentResolver which is obtained
from the Context and then used to query(), insert(), delete(), or update() a
corresponding content provider.

Lastly, we took some time to step away from the code and consider practical ways
we could use a content provider. This is always an important exercise to do when
developing an application, and is one of my goals for this book—to equip you
with both the low-level implementation details of these techniques as well as the
high-level motivations and use cases for them.

Now, earlier I mentioned that the Android OS is replete with pre-existing content
providers that any developer is free to query and update. This is in fact true, and
some of the more common content providers that are built into the system are the
Media and Calendar content providers. However, by far the most important and
most commonly used ContentProvider is the Contacts content provider—the
database schema that is built into the OS and which houses the user's contacts list.

In the next chapter, we'll devote our entire attention into learning and understanding
this Contacts content provider, its schema, and how to interact with it to accomplish
standard queries and updates.

Querying the Contacts Table
Earlier in this book, we looked at how we could build a SQLite database for our
application by overriding the SQLiteOpenHelper class. Then, we extended our
understanding of databases on Android by introducing the ContentProvider
class, which allowed us to expose our SQLite databases to external applications,
and more generally to the Android OS itself.

However, while knowing how to design and implement your own database is a
powerful skill to have, knowing how to leverage existing data on the user's device
can be just as beneficial. Oftentimes, this will mean querying existing content providers
for various types of data, but one especially important content provider – and by far
the most commonly queried content provider - is the Contacts content provider.

In this chapter, we'll start by exploring the structure of the Contacts content
provider (that is, its schema) and then look at the various ways to query for
contacts and their associated metadata.

Structure of the Contacts content
provider
Understanding the schema of the Contacts content provider is half of the challenge.
Because of the wealth of data that can potentially be associated with a contact,
much work had to be done in designing a schema which would be both flexible and
powerful enough to meet every user's needs. In the following table, I've sketched out
how this schema is laid out, and from there we'll examine how the schema works at a
high level, before diving into each table of the schema:

Querying the Contacts Table

[96]

Contacts
_ID LOOKUP_KEY DISPLAY_NAME_PRIMARY PHOTO_ID
1 abcdef Jason Wei 1

Raw Contacts
_ID CONTACT_ID AGGREGATION_MODE ACCOUNT_NAME …
3 1 DEFAULT FACEBOOK

Data Data

RAW_CONTACT_ID MIMETYPE DATA1 RAW_CONTACT_ID

3 PHONE NUMBER 555-000-1111 3

So here you have it – doesn't look too daunting right? Of course, the columns shown
previously are just a subset of the actual columns in each table, but it should hopefully
be enough to give you an idea of how these tables all work together. If you'd like to see
all the columns in each table, I invite you to look at the following links:

http://developer.android.com/reference/android/provider/
ContactsContract.Contacts.html

http://developer.android.com/reference/android/provider/
ContactsContract.RawContacts.html

http://developer.android.com/reference/android/provider/
ContactsContract.Data.html

Let's think about the schema from a high level first. At the top, we have the Contacts
table. In previous versions of Android (API levels 4 and under), this was more or less
all you had. It was just the typical, intuitive, Contacts table, which contained each
contact's unique ID as well as their names, phone numbers, e-mails, and so on.

Then things got complicated. Suddenly, Android 2.0 (API levels 5 and up) came out
and users were allowed to sync their contacts with Facebook, with Twitter, with
Google, along with numerous other services. Does it still make sense to have just a
simple Contacts table? Would each contact for each source be its own separate row?
And how would we know which rows are actually referring to the same contact?

http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html
http://developer.android.com/reference/android/provider/ContactsContract.Contacts.html
http://developer.android.com/reference/android/provider/ContactsContract.RawContacts.html
http://developer.android.com/reference/android/provider/ContactsContract.RawContacts.html
http://developer.android.com/reference/android/provider/ContactsContract.RawContacts.html
http://developer.android.com/reference/android/provider/ContactsContract.Data.html
http://developer.android.com/reference/android/provider/ContactsContract.Data.html
http://developer.android.com/reference/android/provider/ContactsContract.Data.html

Chapter 5

[97]

Because of this, Google had to develop a second layer of tables which reference the
Contacts table – these tables are called Raw Contacts. Every contact the user has is
an aggregation of raw contacts, where each raw contact represents a single contact
from a specific source. So, say you had a friend and you've synced that contact with
both Facebook and Twitter. This friend would then have two Raw Contact tables,
one describing his/her metadata from Facebook and the other describing his/her
metadata from Twitter. Both of these raw contacts would then both point to a single
entry in the Contacts table.

But wait, whereas before each contact's metadata was more or less limited to a few
phone numbers and a few e-mails, now there's an enormous amount of metadata
available for each contact, thanks to social networking. So how would we store all
this metadata? Each contact's latest status messages or latest tweets? Would we just
have one enormous Raw Contacts table with thirty or so columns?

Preferably no – that's probably not a good use of memory, as that table would likely
be fairly sparse. So instead, the team at Google decided to create a third layer of
tables, known as the Data tables. These Data tables all reference a raw contact, which
again, references a contact. And so that's essentially how a contact is described in
the Android OS – a contact is an aggregation of raw contacts which are each specific
to a source (that is, Facebook or Twitter) and each raw contact is an aggregation of
separate data tables where each data table contains a certain type of data (that is,
phone numbers, e-mails, status messages, and so on). That's the high-level picture of
what's happening, and in the next section we'll look at how you actually query these
tables for common fields, such as phone numbers and e-mails.

Now, there are many technical details that fully describe what's happening in
the schema, but for now I'll end this section with a brief discussion of how this
aggregation between raw contacts actually works.

The system automatically aggregates raw contacts, and so each time you create a
new contact or sync a new account to an existing contact, that raw contact is created
with aggregation mode set to DEFAULT, which tells the system to aggregate this raw
contact with other raw contacts referencing the same contact. However, you can
explicitly define what kind of aggregation you want for that raw contact and the
options are as follows:

•	 AGGREGATION_MODE_DEFAULT – The default state, where automatic
aggregation is allowed

•	 AGGREGATION_MODE_DISABLED – Automatic aggregation is not allowed and
the raw contact will not be aggregated

•	 AGGREGATION_MODE_SUSPENDED – Automatic aggregation is deactivated,
however, if the raw contact was previously aggregated, then it will remain
aggregated

Querying the Contacts Table

[98]

These are the three modes of aggregation, which you can update and adjust for each
raw contact. As for how the aggregation is done, it's primarily done by matching
names and/or nicknames, and if names are not present, then the match is attempted
using phone numbers and e-mails.

By now you should have a decent understanding of what the Contacts content
provider looks like, and so we'll move on to looking at some code!

Querying for Contacts
First, let's start with a simple query that targets the Contacts table and gives us
back the contact IDs, each contact's name (remember this is an aggregated display
name), as well as their lookup key. This lookup key is a relatively new concept to
the Contacts content provider and is meant to be a more reliable way to reference
Contacts than using the traditional row ID.

The reason for this is that row IDs tend to be unreliable, especially for a content
provider like the Contacts content provider, which is likely to have numerous
applications referencing, and potentially updating, it simultaneously. Say you try
to reference a contact by its row ID, but earlier a different application on the user's
device had made a change to the Contacts database so that either the contact at that
row ID is now different, or perhaps now it is no longer there! Instead, the lookup key
is a concatenation of the server side's identifiers for each raw contact (in other words,
it is a function of the raw contact's metadata) and will be much more stable. But
enough with the explanations, let's take a look at how a simple query might look:

public class ContactsQueryActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 /*
 * QUERY EXAMPLE
 */

 // FIRST QUERY FOR CONTACT LOOKUPS
 Cursor c = getContentResolver().query(
 ContactsContract.Contacts.CONTENT_URI,
 new String[] { ContactsContract.Contacts._ID,
 ContactsContract.Contacts.DISPLAY_NAME,
 ContactsContract.Contacts.LOOKUP_KEY },
 ContactsContract.Contacts.DISPLAY_NAME +
 " IS NOT NULL", null, null);

Chapter 5

[99]

 startManagingCursor(c);

 int idCol = c.getColumnIndex(Contacts._ID);
 int nameCol = c.getColumnIndex(Contacts.DISPLAY_NAME);
 int lookCol = c.getColumnIndex(Contacts.LOOKUP_KEY);

 // USE A MAP TO KEEP TRACK OF LOOKUP VALUES
 Map<String, String> lookups = new HashMap<String, String>();

 while (c.moveToNext()) {
 int id = c.getInt(idCol);
 String name = c.getString(nameCol);
 String lookup = c.getString(lookCol);
 lookups.put(name, lookup);
 System.out.println("GOT " + id + " // " + lookup +
 " // " + name + " FROM CONTACTS");
 }
}
}

So, here we retrieve our content resolver as we did in the previous chapter, and pass
in the Contacts CONTENT_URI. We then iterate through the cursor and get the fields
that we asked for in the projection array. Notice that I also use a Map to keep track of
each contact's lookup key. In my case, I set the keys to be the contact's display name,
but you could store the lookup keys and/or the contact IDs with any data structure
that you like.

If you already know the lookup key of your contact (perhaps it had previously been
cached somewhere), then you can use that lookup key to directly access the contact
with the following snippet of code:

// ALTERNATIVELY - USE LOOKUP KEY LIKE THIS
Uri lookupUri = Uri.withAppendedPath(
Contacts.CONTENT_LOOKUP_URI, lookups.get("Vicky Wei"));

Cursor c3 = getContentResolver().query(lookupUri,
new String[] { Contacts.DISPLAY_NAME }, null, null, null);

if (c3.moveToFirst()) {
 int nameCol = c3.getColumnIndex(Contacts.DISPLAY_NAME);
 String displayName = c3.getString(nameCol);

 System.out.println("GOT NAME " + displayName +
 " FOR LOOKUP KEY " + lookups.get("Vicky Wei"));
}
c3.close();

Querying the Contacts Table

[100]

So, here we append the lookup value to the URI itself – similar to how we earlier
appended a row ID to the standard content URI to retrieve a single citizen. However,
the problem with this method is that there tends to be some more overhead when
trying to match by lookup key compared to the traditional match by row ID. In other
words, you sacrifice some performance in speed in order to obtain better accuracy
with your query. However, Android provides you with one more method that is
meant to give you both increased accuracy and increased performance:

Uri lookupUri = getLookupUri(contactId, lookupKey)

This method allows you to first search for a contact by its contact ID – a much faster
and still somewhat reliable method. However, in the event that a contact is not found
with that contact ID, the system reverts to using the lookup key. In either case, as
long as the contact exists, you're guaranteed to retrieve the correct lookup URI for
that contact, but oftentimes using this method will give you a nice performance boost
without sacrificing any accuracy.

Now that you have the contact IDs, the lookup keys, and their names, how would
you query for more specific metadata – say their phone numbers or e-mails? Let's
take a look at the following example, where I request a contact's phone number and
phone type by filtering through their lookup key:

// THEN WITH LOOKUP KEYS - FIND SPECIFIC DATA FIELDS
Cursor c2 = getContentResolver().query(
ContactsContract.Data.CONTENT_URI,
new String[] { ContactsContract.CommonDataKinds.Phone.NUMBER, Phone.
TYPE },ContactsContract.Data.LOOKUP_KEY + "=?",
new String[] { lookups.get("Vicky Wei") }, null);
startManagingCursor(c2);

int numberCol = c2.getColumnIndex(Phone.NUMBER);
int typeCol = c2.getColumnIndex(Phone.TYPE);
if (c2.moveToFirst()) {
 String number = c2.getString(numberCol);
 int type = c2.getInt(typeCol);
 String strType = "";
 switch (type) {
 case Phone.TYPE_HOME:
 strType = "HOME";
 break;
 case Phone.TYPE_MOBILE:
 strType = "MOBILE";
 break;

Chapter 5

[101]

 case Phone.TYPE_WORK:
 strType = "WORK";
 break;
 default:
 strType = "MOBILE";
 break;
 }
System.out.println("GOT NUMBER " + number + " OF TYPE " +
strType + " FOR VICKY WEI");
}

Notice that we leave some of the full package paths to the Phone and Data classes
to again give you a glimpse at the hierarchical nature of the schema. Here, since
we're targeting the Data tables now and not the Contact table, we pass in the
corresponding Data CONTENT_URI. Then, in the projection parameter, we request
the phone number as well as the phone type, and in the selection parameter I make
sure I filter by the lookup key. Once I successfully make the query, we simply move
the cursor (at this point there's only one number associated with Vicky; otherwise,
we would use a while loop) and grab the fields again. Notice that we write a simple
switch statement, which allows us to convert the PHONE_TYPE – returned as an
integer – into a more user-friendly string.

And last but not least, let's take a look at how we could query the
Raw Contacts table:

// NOW LOOK AT RAW CONTACT IDS
c = getContentResolver().query(
ContactsContract.RawContacts.CONTENT_URI,
new String[] { ContactsContract.RawContacts._ID, RawContacts.ACCOUNT_
NAME, RawContacts.ACCOUNT_TYPE, RawContacts.CONTACT_ID }, null, null,
null);
startManagingCursor(c);

int rawIdCol = c.getColumnIndex(RawContacts._ID);
int accNameCol = c.getColumnIndex(RawContacts.ACCOUNT_NAME);
int accTypeCol = c.getColumnIndex(RawContacts.ACCOUNT_TYPE);
int contactIdCol = c.getColumnIndex(RawContacts.CONTACT_ID);

while (c.moveToNext()) {
 int rawId = c.getInt(rawIdCol);
 String accName = c.getString(accNameCol);
 String accType = c.getString(accTypeCol);
 int contactId = c.getInt(contactIdCol);

 System.out.println("GOT " + rawId + " // " + accName +
 " // " + accType + " REFRENCING CONTACT " + contactId);
}

Querying the Contacts Table

[102]

This is particularly useful if you want to look at a contact's metadata for a specific
source (say you only care about what information Facebook has on that contact).
Then you could potentially filter the Raw Contacts table by the ACCOUNT_NAME or
ACCOUNT_TYPE, and once you have the raw contact IDs associated with that specific
source, you could then query the Data tables for any metadata associated with those
specific raw contact IDs!

Now, let's take a quick look at how to modify contact data – more specifically, how to
insert and update contact data. Note that in order to successfully run these Activities,
we'll need to request special permissions in the Android Manifest file. However,
for now, let's continue to focus on the code, and we'll make sure to take a detour and
cover all the permissions at the very end.

Modifying Contacts
The code for the following examples should again look very familiar. And like I said
earlier, half of the challenge is just mastering the schema and understanding how
each table interacts with the others (it helps to see the schema laid out like previously
– otherwise it can be extremely confusing and may require browsing through a lot of
verbose documentation). Let's say we want to insert a new phone number for a user.
Which table's URI should we reference?

Well, it'd have to be one of the Data tables and we should probably pass in the
MIMETYPE of the data so that the content provider knows exactly which of the Data
tables to insert the new row in. In this case, we'll specify the phone content type and
pass in a number and a number type. The only field we're missing is the ID – whose
phone Data table should this new row go into? Well, recalling that each Data table
points to a Raw Contact table, it would make sense to pass in the raw contact ID of
the contact.

So we try to repeat this thought process for every insert, update, or delete that we
have to make, and the code ends up looking like this:

public class ContactsQueryActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

Chapter 5

[103]

 /*
 * INSERT EXAMPLE
 */
 ContentValues values = new ContentValues();
 // IN THIS CASE - EACH RAW ID IS JUST THE CONTACT ID
 values.put(ContactsContract.Data.RAW_CONTACT_ID, 2);
 values.put(Data.MIMETYPE, Phone.CONTENT_ITEM_TYPE);
 values.put(Phone.NUMBER, "555-987-1234");
 values.put(Phone.TYPE, Phone.TYPE_WORK);
 Uri contactUri = getContentResolver().insert(
 Data.CONTENT_URI, values);

 Cursor c4 = getContentResolver().query(contactUri,
 new String[] { Phone.NUMBER, Phone.TYPE }, null, null, null);
 startManagingCursor(c4);

 // READ BACK THE ROW
 if (c4.moveToFirst()) {
 String number = c4.getString(numberCol);
 int type = c4.getInt(typeCol);
 String strType = "";
 switch (type) {
 case Phone.TYPE_HOME:
 strType = "HOME";
 break;
 case Phone.TYPE_MOBILE:
 strType = "MOBILE";
 break;
 case Phone.TYPE_WORK:
 strType = "WORK";
 break;
 default:
 strType = "MOBILE";
 break;
 }
 System.out.println("GOT NUMBER " + number + " OF TYPE " +
 strType + " FOR VICKY WEI");
 }
 }
}

Querying the Contacts Table

[104]

Here we use our content resolver along with a ContentValues object to do a
standard insert. Once we insert it, we're returned the URI of that newly-inserted
row, and so we simply run a query on that URI and read back the data that we just
inserted, just as a sanity check that the insertion worked. I'll point this out in the
screenshot which follows.

Now, the developers over at Google encourage another way to do an insertion, and
this is through using batch insertions. This is another relatively new concept for
the Android OS and is a variant on the traditional ContentValues class. By using
batch operations, not only will you gain a considerable boost in performance when
inserting multiple rows at once (saves you time from having to switch from the client
side to the server side), but it will also ensure atomicity in your insertion. This is just
a fancy database word meaning that either all of the rows will get inserted or none
will, so that if an error occurs midway through your insertions, the system will
make sure to roll back those previous insertions so that the consistency of the
database is preserved.

The syntax for these batch insertions is shown as follows and is pretty intuitive:

// NOW INSERT USING BATCH OPERATIONS
ArrayList<ContentProviderOperation> ops =
new ArrayList<ContentProviderOperation>();

ops.add(ContentProviderOperation.newInsert(Data.CONTENT_URI)
.withValue(Data.RAW_CONTACT_ID, 3)
.withValue(Data.MIMETYPE, Email.CONTENT_ITEM_TYPE)
.withValue(Email.DATA, "daniel@stanford.edu")
.withValue(Email.TYPE, Email.TYPE_WORK)
.build());
try {
 getContentResolver().applyBatch
 (ContactsContract.AUTHORITY, ops);
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("ERROR: BATCH TRANSACTION FAILED");
}

To wrap up this chapter, we'll take a quick look at how you could use this new batch
operation mechanism to update the e-mail of a contact:

/*
* UPDATE EXAMPLE
*/

ops = new ArrayList<ContentProviderOperation>();

Chapter 5

[105]

ops.add(ContentProviderOperation.newUpdate(Data.CONTENT_URI)
.withSelection(Data.RAW_CONTACT_ID + "=? AND " +
Email.TYPE + "=?",new String[] { "7", String.valueOf(Email.
TYPE_WORK) }).withValue(Email.DATA,"james@android.com").
build());
try {
 getContentResolver().applyBatch(
 ContactsContract.AUTHORITY, ops);
 } catch (Exception e) {
 e.printStackTrace();
 System.out.println("ERROR: BATCH TRANSACTION FAILED");
}

That's it! Here again, we think to ourselves that we'll likely need to specify both the
raw contact ID so that the content provider knows whose Data table to update, as
well as the MIMETYPE of the Data table so that the content provider knows which
of the Data tables to update. As for the results from all the queries, insertions, and
updates done in this section, see the following:

Querying the Contacts Table

[106]

Here we first see all the contacts in my contact list along with their lookup keys,
IDs, and display names. Then, we see the phone numbers we retrieved from Vicky,
as well as the results of looking her up by her lookup key instead of her contact ID,
and followed by our query of the Raw Contacts table. Notice that for account names
and account types you see a bunch of null values, but this is simply a result of my
running my code on the emulator. When you try running the code on a fully synced
and live contact list, expect to see much more colorful results. Lastly, we just see
some of the results from our insertions and updates and can further validate that our
insertions/updates were successful by actually looking at the contacts in the contacts
list as follows:

Here we see that we've successfully inserted a work number for contact Vicky, and
then again for Daniel, we see the following:

Chapter 5

[107]

So that he indeed now has a work e-mail with the correct e-mail that we specified.
And so that's it! Hopefully, now you'll have a strong understanding of both the
schema of the Contacts content provider as well as the general syntax for how you
would construct a valid query or insertion. Remember to keep the schema in mind
as you think through which fields to pass in and which tables you really want to be
querying from.

Setting permissions
Now that we've mastered the Contacts content provider without declaring the
proper permissions, you might encounter some rude force closes when trying to
run the previous code. To protect the user's personal contact information from
potentially malicious applications, the Android OS requires you to declare some read
and write permissions in your applications in the Android Manifest file. To do this,
all you need to do is add the following two lines to your manifest file:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="jwei.apps.dataforandroid"
 android:versionCode="1"
 android:versionName="1.0">

 <application android:icon="@drawable/icon" android:label=
 "@string/app_name">

 <activity android:name=".ch5.ContactsQueryActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>
 <uses-sdk android:minSdkVersion="5" />

 <uses-permission android:name="android.permission.READ_CONTACTS"/>
 <uses-permission android:name="android.permission.WRITE_CONTACTS"/>

</manifest>

Querying the Contacts Table

[108]

So basically, you just need to declare in your manifest that you want to be able
to both read and write (that is, modify) contacts (or just declare one or the other
according to what your application needs). This will then prompt the user before
they download your application that your application requires these permissions,
and as long as the user accepts them your application is all set to run!

Summary
In this chapter, we expanded upon our knowledge of content providers by mastering
the most widely used content provider available to every application across every
device – the Contacts content provider. We started off by taking a look at the
schema of the Contacts content provider, which has grown increasingly complex as
the amount of metadata associated with a given contact has soared thanks to various
social networking sources. In order to solve this problem, the team at Google decided
to switch up the schema by having a first-tier table simply known as the Contacts
table, followed by a second-tier of tables known as the Raw Contact tables, and then
by a third-tier of tables simply known as the Data tables. Each contact is then an
aggregation of a group of raw contacts that are specific to a source (that is, Facebook
or Twitter), and each raw contact is then an aggregation of a series of Data tables,
each having its own type of data (that is, phone numbers or e-mails).

Afterwards, we looked at multiple ways to query the Contacts content provider as
well as multiple ways to insert and update existing contacts in the content provider.
This proved to be relatively straightforward code-wise (extremely similar to what
we saw in previous chapters) and again, showed us how half the battle is just in
understanding the schema and making sure we include all the proper fields.

Now, so far in this book, we've looked at ways to query your own as well as external
databases, but each time we've relied on simple system print statements to actually
see the results of our queries (by now I'm sure you're sick of seeing DDMS logs
too). So the question becomes – now that I know how to actually build and query
databases, how do I design Activities which allow me to bind this data to the UI for
the user to see and interact with? This is what we'll focus on in the next chapter as we
explore ways to bind and interact with our databases through the user interface.

Binding to the UI
We've covered a lot of ground over the previous five chapters – looking at
lightweight forms of data storage (such as SharedPreferences) to more
heavy-weight forms of data storage (such as SQLite databases). But for each
data storage method and in each example that we've looked at – in order to
actually see the results of our queries and our backend data manipulations,
we had to rely on very simple system IO print commands.

More often than not though, as mobile developers, our applications will need to both
aesthetically display the results of such data queries, as well as give users an intuitive
interface to store and insert data.

In this chapter, we will focus on the former – on binding data to the user interface
(UI) and will look specifically at various classes that will allow us to bind our data in
the form of lists (the most common and intuitive way to display rows of data).

SimpleCursorAdapters and ListViews
There are two major ways of retrieving data on Android, and each has its own class
of ListAdapters, which will then know how to handle and bind the passed-in data.
The first way of retrieving data is one that we're very familiar with already – through
making queries and obtaining Cursor objects. The subclass of ListAdapters
that wrap around Cursors is called CursorAdapter, and in the next section we'll
focus on the SimpleCursorAdapter, which is the most straightforward instance
of CursorAdapter.

As we already know, the Cursor points to a subtable of rows containing the results
of our query. By iterating through this cursor, we are able to examine the fields of
each row, and in previous chapters we've printed out the values of these fields in
order to inspect the subtable that was returned. Now we would like to convert each
row of the subtable into a corresponding row in our list. The first step in doing this is
to set up a ListActivity (a variant of the more common Activity class).

Binding to the UI

[110]

As its name suggests, a ListActivity is simply a subclass of the Activity
class which comes with methods that allow you to attach ListAdapters. The
ListActivity class also allows you to inflate XML layouts, which contain list tags.
In our example, we will use a very bare-bones XML layout (named list.xml) that
only contains a ListView tag as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" >
 <ListView
 android:id="@android:id/android:list"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content" />
</LinearLayout>

This is the first step in setting up what's called a ListView in Android. Similar
to how defining a TextView allows you to see a block of text in your Activity,
defining a ListView will allow you to interact with a scrollable list of row objects
in your Activity.

Intuitively, the next question in your mind should be: Where do I define how each
row actually looks? Not only do you need to define the actual list object somewhere,
but each row should have its own layout as well. So, to do this we create a separate
list_entry.xml file in our layouts directory.

The example I'm about to use is the one that queries the Contacts content provider
and returns a list containing each contact's name, phone number, and phone number
type. Thus, each row of my list should contain three TextViews, one for each data
field. Subsequently, my list_entry.xml file looks like the following:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:padding="10dip" >
 <TextView
 android:id="@+id/name_entry"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"

Chapter 6

[111]

 android:textSize="28dip" />
 <TextView
 android:id="@+id/number_entry"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textSize="16dip" />
 <TextView
 android:id="@+id/number_type_entry"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:textColor="#DDD"
 android:textSize="14dip" />
</LinearLayout>

So we have a vertical LinearLayout which contains three TextViews, each with its
own properly defined ID as well as its own aesthetic properties (that is, text size and
text color).

In terms of set up – this is all we need! Now we just need to create the ListActivity
itself, inflate the list.xml layout, and specify the adapter. To see how all this is
done, let's take a look at the code before breaking it apart piece by piece:

public class SimpleContactsActivity extends ListActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list);

 // MAKE QUERY TO CONTACT CONTENTPROVIDER
 String[] projections = new String[] { Phone._ID,
 Phone.DISPLAY_NAME, Phone.NUMBER, Phone.TYPE };
 Cursor c = getContentResolver().query(Phone.CONTENT_URI,
 projections, null, null, null);
 startManagingCursor(c);

 // THE DESIRED COLUMNS TO BE BOUND
 String[] columns = new String[] { Phone.DISPLAY_NAME,
 Phone.NUMBER, Phone.TYPE };

 // THE XML DEFINED VIEWS FOR EACH FIELD TO BE BOUND TO
 int[] to = new int[] { R.id.name_entry, R.id.number_entry,
 R.id.number_type_entry };

Binding to the UI

[112]

 // CREATE ADAPTER WITH CURSOR POINTING TO DESIRED DATA
 SimpleCursorAdapter cAdapter = new SimpleCursorAdapter(this,
 R.layout.list_entry, c, columns, to);

 // SET THIS ADAPTER AS YOUR LIST ACTIVITY'S ADAPTER
 this.setListAdapter(cAdapter);
 }
}

So what's going on here? Well, the first part of the code you should recognize by now
– we're simply making a query over the phone's contact list (specifically over the
Contact content provider's Phone table) and asking for the contact's name, number,
and number type.

Next, the SimpleCursorAdapter takes as two of its parameters, a string array and an
integer array which represent a mapping between Cursor columns and XML layout
views. In our case, this is as follows:

// THE DESIRED COLUMNS TO BE BOUND
String[] columns = new String[] { Phone.DISPLAY_NAME, Phone.NUMBER,
Phone.TYPE };
// THE XML DEFINED VIEWS FOR EACH FIELD TO BE BOUND TO
int[] to = new int[] { R.id.name_entry, R.id.number_entry, R.id.
number_type_entry };

This is so that the data in the DISPLAY_NAME column will get bound to the TextView
with ID name_entry, and so on. Once we have these mappings defined, the next part
is to just instantiate the SimpleCursorAdapter, which can be seen in this line:

// CREATE ADAPTER WITH CURSOR POINTING TO DESIRED DATA
SimpleCursorAdapter cAdapter = new SimpleCursorAdapter(this, R.layout.
list_entry, c, columns, to);

Now, the SimpleCursorAdapter takes five parameters – the first is the Context,
which essentially tells the CursorAdapter which parent Activity it needs to inflate
and bind the rows to. The next parameter is the ID of the R layout that you defined
earlier, which will tell the CursorAdapter what each row should look like and,
furthermore, where it can inflate the corresponding Views. Next, we pass in the
Cursor, which tells the adapter what the underlying data actually is, and lastly,
we pass in the mappings.

Chapter 6

[113]

Hopefully, the previous code makes sense, and the parameters of
SimpleCursorAdapter make sense as well. The result of this previous
Activity can be seen in the following screenshot:

Everything looks good, except for these random integers floating around under the
phone number. Why are there a bunch of 1s, 2s, and 3s at the bottom of each row
where the types should be? Well, recall from the previous chapter that the phone
number types are not returned as Strings but are instead returned as integers. From
there through a simple switch statement, we can easily convert these integers into
more descriptive Strings.

However, you'll quickly see that with our very simple, straightforward use of the
built-in SimpleCursorAdapter class, there was nowhere for us to implement any
"special" logic that would allow us to convert such returned integers to Strings. This
is when overriding the SimpleCursorAdapter class becomes necessary, because only
then can we have full control over how the Cursor's data is to be displayed in each
row. And so, we move onwards to the next section where we see just that.

Binding to the UI

[114]

Custom CursorAdapters
In this section, we will expand upon the SimpleCursorAdapter and try to write
our own CursorAdapter class, which will give us greater flexibility in terms of how
the underlying data is to be displayed. The goal of our custom class will be simple
– instead of having the phone number types being displayed as integers, let's find a
way to display them as readable Strings.

Upon extending the SimpleCursorAdapter class, we'll need to override and
implement the newView() method, and most importantly the bindView() method.
Optionally, we can also customize our constructor, which depending on your
implementation can be useful for caching and performance-enhancing reasons
(we'll see an example of this later on).

Conceptually, what's happening here is that each time a new row is actually
displayed on the Android device's screen, the newView() method gets called. This
means that as the user scrolls through the Activity's list and new rows appear on
the device's screen (for the first time), this newView() method will get called. And
so, the functionality of this newView() should be kept relatively straightforward.
In my implementation, this means that given the context, I make a request for
the associated LayoutInflater class and use it to inflate the new row's layout
(as defined in list_entry.xml).

The meat of the logic then occurs in the bindView() method. Once the newView()
method is called and the actual layout of the row is initialized, the next method that
gets called is the bindView() method. This method takes as parameters the new
View object that was previously instantiated, as well as the Cursor that belongs to
this adapter class. It's important to note that the Cursor that's passed in has already
been moved to the correct index. In other words, the adapter is smart enough to
pass you a Cursor that is pointing to the row of data corresponding to the row of
your layout that you're creating! Now of course, it's hard to see and understand
these methods without actually seeing the code side by side and so, before I go any
further, let's take a quick look:

public class CustomContactsAdapter extends SimpleCursorAdapter {

 private int layout;

 public CustomContactsAdapter(Context context, int layout,
 Cursor c, String[] from, int[] to) {
 super(context, layout, c, from, to);

Chapter 6

[115]

 this.layout = layout;
 }

 @Override
 public View newView(Context context, Cursor cursor,
 ViewGroup parent) {
 final LayoutInflater inflater = LayoutInflater.from(context);
 View v = inflater.inflate(layout, parent, false);
 return v;
 }

 @Override
 public void bindView(View v, Context context, Cursor c) {
 int nameCol = c.getColumnIndex(Phone.DISPLAY_NAME);
 int numCol = c.getColumnIndex(Phone.NUMBER);
 int typeCol = c.getColumnIndex(Phone.TYPE);

 String name = c.getString(nameCol);
 String number = c.getString(numCol);
 int type = c.getInt(typeCol);

 String numType = "";
 switch (type) {
 case Phone.TYPE_HOME:
 numType = "HOME";
 break;
 case Phone.TYPE_MOBILE:
 numType = "MOBILE";
 break;
 case Phone.TYPE_WORK:
 numType = "WORK";
 break;
 default:
 numType = "MOBILE";
 break;
 }

 // FIND THE VIEW AND SET THE NAME
 TextView name_text = (TextView) v.findViewById
 (R.id.name_entry);
 name_text.setText(name);

Binding to the UI

[116]

 TextView number_text = (TextView) v.findViewById
 (R.id.number_entry);
 number_text.setText(number);

 TextView type_text = (TextView) v.findViewById
 (R.id.number_type_entry);
 type_text.setText(numType);
 }
}

Again, you'll notice that the newView() method's implementation is pretty
straightforward. You'll also notice that the Context being passed in is the same
Context for each new row that is added – and so each time this method gets called,
I'm actually requesting the same LayoutInflater object. Though it didn't make
a noticeable difference in this case, little nuances like this (that is, not requesting
the same resource continuously) are small ways in which you can optimize the
performance of your lists. Here, by instantiating the LayoutInflater a single time
in the constructor and reusing it each time, we can potentially save hundreds of
unnecessary requests. Though this may seem like a very minor optimization, keep in
mind that when it comes to lists, especially on mobile devices, users expect them to
be extremely snappy and responsive. A list that lags is often a huge nuisance to users
over time, and is frequently indicative of a poorly written application.

Now for the bindView() method. Again, the flow is that first newView() gets called
and a new row is instantiated, and then bindView() gets called with this new row's
layout view passed in. Here we have also passed a Cursor object, but it's important
to note that the Cursor is actually pointing to the next row of data. In other words,
the Cursor is not pointing to the first row of the queried subtable but instead is
pointing to a single row and is being incremented accordingly behind the scenes.
This is what I mean by the CursorAdapter class being a nice class to use because of
how it handles the underlying Cursor for you as the list scrolls up and down.

As for the logic in our binding – it's pretty simple. Given the Cursor, we ask for
the corresponding fields and their respective values, and since we're also passed
the View object of that row, we just need to set the correct String value for each
TextView. However, notice that here we have the flexibility to insert additional logic
which allows us to handle the fact that the phone number's type is returned as an
integer. So, naturally we include the switch statement here, and instead of setting the
integer into the type_text TextView, we set the readable String value there!

Now, even though this is a pretty simple example, the goal of this exercise is to see
how by extending the SimpleCursorAdapter class and implementing our own
CursorAdapter, we can override the bindView() method and use the passed in
View and Cursor objects to customize our row's display in any way that we want!

Chapter 6

[117]

As for how you actually use your custom CursorAdapter in the previous
SimpleCursorAdapter example, simply swap out the following line:

SimpleCursorAdapter cAdapter = new SimpleCursorAdapter(this, R.layout.
list_entry, c, columns, to);

with the line:

CustomContactsAdapter cAdapter = new CustomContactsAdapter(this,
R.layout.list_entry, c, columns, to);

And how does this all look in the end? Let's take a quick look:

Here we see that in each row, instead of simply showing the integer type of the phone
number, we can see the actual readable String type as desired! Much nicer now.

BaseAdapters and Custom BaseAdapters
Earlier we mentioned that there were typically two ways to retrieve data – the first
being in the form of a Cursor object and the second being in the form of a list of
objects. In this section, we'll focus on this latter method of retrieving and handling
data, and subsequently how to convert lists of objects into viewable rows of data.

Binding to the UI

[118]

So in what situations would we actually have a list of objects instead of a Cursor?
Up until now, all of our focus has been on building up SQLite databases and content
providers and in all cases we've been returned a Cursor. But, as we'll see in future
chapters, oftentimes data storage isn't actually done on the mobile device side, but
instead on external databases.

In these cases, retrieving data isn't as easy as just making SQLite queries, but instead
needs to be done over the network through HTTP requests. Furthermore, once the
data is obtained, it will likely be in some kind of String format (typically either XML
or JSON – but more on this later), and instead of parsing this String for data and then
inserting it into a SQLite database, typically you will simply convert each String into
an object and store them in a standard list. To handle lists of objects, Android has a
kind of ListAdapter known as the BaseAdapter, which we will override and dissect
in this section.

Let's take a simple example where we have a list of contact objects (for simplicity,
let's just call the class ContactEntry), which, like the previous examples, contain a
name, phone number, and phone number type field. The code for this would simply
be as follows:

public class ContactEntry {

 private String mName;

 private String mNumber;

 private String mType;

 public ContactEntry(String name, String number, int type) {
 mName = name;
 mNumber = number;
 String numType = "";
 switch (type) {
 case Phone.TYPE_HOME:
 numType = "HOME";
 break;
 case Phone.TYPE_MOBILE:
 numType = "MOBILE";
 break;
 case Phone.TYPE_WORK:
 numType = "WORK";
 break;
 default:
 numType = "MOBILE";

Chapter 6

[119]

 break;
 }
 mType = numType;
 }

 public String getName() {
 return mName;
 }

 public String getNumber() {
 return mNumber;
 }

 public String getType() {
 return mType;
 }

}

Here you'll notice that in the constructor of the ContactEntry, I convert the integer
type directly into the readable String type. As for the implementation, we create our
own ContactBaseAdapter class and extend the BaseAdapter class, allowing us to
override the getView() method.

Conceptually, the BaseAdapter is very similar to the CursorAdapter except that
instead of passing in and holding onto a Cursor, we pass in and hold onto a list of
objects. This is simply done in the constructor of the BaseAdapter, at which point
we store a private pointer to that list of objects and can optionally write a bunch
of wrapper methods around that list (that is, getCount(), getItem(), and so on).
And again, just as how the CursorAdapter class knows how to manage and iterate
through the Cursor, the BaseAdapter class will know how to manage and iterate
through the list of objects given.

The meat then is in the getView() method of the BaseAdapter. Notice how
in the CursorAdapter class we had both a newView() method as well as a
bindView() method. Here, our getView() method is designed to play the
role of both – instantiating new views where the row was previously null,
and binding data to old rows where the rows had previously been inflated.
Let's take a quick look at the code and try to connect all these pieces again:

public class ContactBaseAdapter extends BaseAdapter {

 // REMEMBER CONTEXT SO THAT IT CAN BE USED TO INFLATE VIEWS
 private LayoutInflater mInflater;

Binding to the UI

[120]

 // LIST OF CONTACTS
 private List<ContactEntry> mItems = new ArrayList<ContactEntry>();

 // CONSTRUCTOR OF THE CUSTOM BASE ADAPTER
 public ContactBaseAdapter(Context context,
 List<ContactEntry> items) {
 // HERE WE CACHE THE INFLATOR FOR EFFICIENCY
 mInflater = LayoutInflater.from(context);
 mItems = items;
 }

 public int getCount() {
 return mItems.size();
 }

 public Object getItem(int position) {
 return mItems.get(position);
 }
 public View getView(int position, View convertView,
 ViewGroup parent) {
 ContactViewHolder holder;

 // IF VIEW IS NULL THEN WE NEED TO INSTANTIATE IT BY INFLATING
 IT – I.E. INITIATING THAT ROWS VIEW IN THE LIST
 if (convertView == null) {
 convertView = mInflater.inflate(R.layout.list_entry,
 null);

 holder = new ContactViewHolder();
 holder.name_entry = (TextView) convertView.findViewById
 (R.id.name_entry);
 holder.number_entry = (TextView) convertView.
 findViewById(R.id.number_entry);
 holder.type_entry = (TextView) convertView.findViewById
 (R.id.number_type_entry);

 convertView.setTag(holder);
 } else {
 // GET VIEW HOLDER BACK FOR FAST ACCESS TO FIELDS
 holder = (ContactViewHolder) convertView.getTag();
 }

 // EFFICIENTLY BIND DATA WITH HOLDER
 ContactEntry c = mItems.get(position);

Chapter 6

[121]

 holder.name_entry.setText(c.getName());
 holder.number_entry.setText(c.getNumber());
 holder.type_entry.setText(c.getType());

 return convertView;
 }

 static class ContactViewHolder {
 TextView name_entry;

 TextView number_entry;

 TextView type_entry;
 }
}

First off, let's take a look at the constructor. Notice that I utilized the optimization
mentioned earlier – namely, I instantiate the LayoutInflater just once in the
constructor, because I know that the Context will remain the same throughout
the Activity. This will give us a slight boost in performance when we actually
run our Activity.

Now, let's see what's going on in this getView() method. The parameters for this
method are the position (of the row), the row's view, and the parent view. The first
thing we need to check is if the current row's view is null – this will be the case when
the current row has not previously been instantiated, which in turn happens when
the current row appears on the user's screen for the first time. If that's the case, then
we instantiate and inflate this row's view. Otherwise, we know that we've already
previously inflated this row's view, and simply need to update its fields.

Here, we also make use of a static ContactViewHolder class which acts as a cache.
This method is recommended by the Android team over at Google (see http://
developer.android.com/resources/samples/ApiDemos/src/com/example/
android/apis/view/List14.html for details) and is meant to enhance the list's
performance. The inflating of the view looks like the following:

if (convertView == null) {
 convertView = mInflater.inflate(R.layout.list_entry, null);

 holder = new ContactViewHolder();
 holder.name_entry = (TextView) convertView.findViewById
 (R.id.name_entry);
 holder.number_entry = (TextView) convertView.
 findViewById(R.id.number_entry);

Binding to the UI

[122]

 holder.type_entry = (TextView) convertView.findViewById
 (R.id.number_type_entry);

 convertView.setTag(holder);
} else {
 // GET VIEW HOLDER BACK FOR FAST ACCESS TO FIELDS
 holder = (ContactViewHolder) convertView.getTag();
}

Notice that when the view is null, the inflation of the view is pretty standard – use
the LayoutInflater class and tell it which R layout to inflate. However, once
the view has been inflated, we create an instance of the ContactViewHolder
class and create pointers to each newly inflated view's TextView fields (in this
case – though they could just as easily be ImageViews, and so on). Once the new
ContactViewHolder class has been fully initiated, we associate it by setting it as the
current row's tag (think of this as a view to holder mapping where the view is the
key and the holder is the value).

If the view is not null, then we simply need to ask for the previously instantiated
view's tag (again, you can think of this as requesting a key's value).

Once we have the corresponding ContactViewHolder, we can use the passed-in
position to get the corresponding ContactEntry object in our list. From there, we
know what contact the current row is referencing, and so we can dig out the name,
number, and phone type, and then set them accordingly.

That's it! Let's take a look at how we would implement our ContactBaseAdpater:

public class CustomBaseAdapterActivity extends ListActivity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list);

 // MAKE QUERY TO CONTACT CONTENTPROVIDER
 String[] projections = new String[] { Phone._ID,
 Phone.DISPLAY_NAME, Phone.NUMBER, Phone.TYPE };
 Cursor c = getContentResolver().query(Phone.CONTENT_URI,
 projections, null, null, null);
 startManagingCursor(c);

 List<ContactEntry> contacts = new ArrayList<ContactEntry>();
 while (c.moveToNext()) {
 int nameCol = c.getColumnIndex(Phone.DISPLAY_NAME);

Chapter 6

[123]

 int numCol = c.getColumnIndex(Phone.NUMBER);
 int typeCol = c.getColumnIndex(Phone.TYPE);

 String name = c.getString(nameCol);
 String number = c.getString(numCol);
 int type = c.getInt(typeCol);
 contacts.add(new ContactEntry(name, number, type));
 }

 // CREATE ADAPTER USING LIST OF CONTACT OBJECTS
 ContactBaseAdapter cAdapter = new ContactBaseAdapter(this,
 contacts);

 // SET THIS ADAPTER AS YOUR LIST ACTIVITY'S ADAPTER
 this.setListAdapter(cAdapter);
 }
}

For our purposes, you can ignore the first part, as we are literally querying the
Contact content provider, taking the resulting Cursor, iterating through it, and
creating a list of ContactEntry objects. Obviously this is silly, so assume that in
your implementation you will directly be returned a list of objects. Once we have
our list though, the call is simply:

// CREATE ADAPTER USING LIST OF CONTACT OBJECTS
ContactBaseAdapter cAdapter = new ContactBaseAdapter(this, contacts);

And the results of running this code look exactly like that of the second screenshot in
our earlier example (as expected).

Now that we've taken a look at both CursorAdapters and BaseAdapters and how
to implement each in code, let's take a step back and think about potential use cases
for the two classes.

Handling list interactions
Now, one common feature of every ListView in Android is that the user should
often be able to select a row in the list and expect some sort of added functionality.
For instance, maybe you have a list of restaurants, and selecting a specific restaurant
within the list brings you to a more detailed description page. This is again where
the ListActivity class comes in handy, as one method we can override is the
onListItemClick() method. This method takes several parameters, but one of the
most important is the position parameter.

Binding to the UI

[124]

The full declaration of the method is as follows:

@Override
protected void onListItemClick(ListView l, View v, int position, long
id) { }

And once we have the position index, regardless of whether or not our underlying
data is a Cursor or a list of objects, we can use this position index to retrieve the
desired row/object. The code for the previous CursorAdapter example would look
like the following:

@Override
 protected void onListItemClick(ListView l, View v, int position,
 long id) {
 super.onListItemClick(l, v, position, id);
 Cursor c = (Cursor) cAdapter.getItem(position);

 int nameCol = c.getColumnIndex(Phone.DISPLAY_NAME);
 int numCol = c.getColumnIndex(Phone.NUMBER);
 int typeCol = c.getColumnIndex(Phone.TYPE);

 String name = c.getString(nameCol);
 String number = c.getString(numCol);
 int type = c.getInt(typeCol);

 System.out.println("CLICKED ON " + name + " " + number + " "
 + type);
 }

Similarly, the code for the BaseAdapter example would be as follows:

@Override
 protected void onListItemClick(ListView l, View v, int position,
 long id) {
 super.onListItemClick(l, v, position, id);
 ContactEntry c = contacts.get(position);

 String name = c.getName();
 String number = c.getNumber();
 String type = c.getType();

 System.out.println("CLICKED ON " + name + " " + number + " "
 + type);
 }

Chapter 6

[125]

Both are pretty similar and pretty self-explanatory. We simply retrieve the desired
row/object using the position index, and then output the desired fields. Oftentimes,
the developer might have a separate Activity where they would give the user more
details on the object in the row they clicked (that is, the restaurant, the contact,
and so on). This may require passing the ID (or some other identifier) of the
row/object from the ListActivity to the new details Activity, and this is done
through embedding fields into Intent objects – but more on this in the next chapter.

Comparing CursorAdapters and
BaseAdapters
So under what typical scenarios would you find yourself using a BaseAdapter
instead of a CursorAdapter and vice versa? We've already thought of a few
instances previously, but let's take a little more time to brainstorm some use cases,
just to get you even more comfortable with the two ListAdapters and when to
switch between the two.

The general rule of thumb should be whenever your underlying data is returned
as a Cursor, use a CursorAdapter, and whenever your data is returned or can be
manipulated into a list of objects, use a BaseAdapter.

This means that for most network requests when the data is returned as one long
String (again, getting a little ahead of myself but this String will typically be in either
an XML or JSON format), it's best to simply parse the String and convert it into
objects. These can then be stored in a list and passed into a custom BaseAdapter.
This will often also be the case if you are calling an external API, in which case the
data will typically come back as either XML or JSON. The exception then is when
you want to cache the results.

Caching typically involves temporarily storing some data in a more local (or faster)
area of memory (with CPU systems, this means storing data in RAM instead of
on disk, and for mobile applications this means storing data locally instead of
continuously requesting external data through a network). If you want to cache
some of your network calls – whether it's for performance reasons or for offline
access reasons – then the suggested flow is to make your network request, retrieve
the formatted data String, parse the data String, and insert the data into a SQLite
database (meant to mimic the external database). Then, since your data is already
housed in a SQLite database, it's best (and easiest) to just make a quick query and
get back a Cursor.

Binding to the UI

[126]

Now, what about a scenario where you have a static list of primitive objects, for
instance Strings? This would often be the case if you had some kind of fixed table
of contents where the user has to select from a pre-defined list of options. In that
case, both a BaseAdapter and a CursorAdapter would be overkill, and instead you
should opt to use a much simpler kind of Adapter known as the ArrayAdapter. I
tried not to spend any time on this kind of ListAdapter, as it's extremely simple
to use and conceptually it's extremely simple as well – if you have a static Array
of Strings and you want to make a list out of them, just pass that Array into an
ArrayAdapter and you're good to go.

However, this is all I will say on the ArrayAdapter and I invite you to read through
the example found on the following site:

http://developer.android.com/resources/tutorials/views/hello-
listview.html

Otherwise, just remember that for lightweight static data, use the ArrayAdapter, for
dynamic object-oriented data, use the BaseAdapter and for locally stored subtable
based data, use the CursorAdapter.

Summary
In this chapter, we finally shifted our focus away from the backend and towards
the frontend – getting an in-depth look at ways we can bind our data to the user
interface. Of course, users can interact with data in numerous ways, but by far the
most common is through a ListView.

ListViews and ListActivities are convenient classes which allow us to bind
ListAdapters to the Activity and subsequently to the list layouts, handling events
such as when a user touches a row in the list. ListAdapters are then classes which
take in the underlying data and handle the binding process for you – namely, that as
your list scrolls up and down you don't need to keep track of the position in the list;
all that is done for you behind the scenes. Instead, all you need to do is choose which
ListAdapter to use depending on the type of underlying data you have, and specify
how you want the binding to occur.

Chapter 6

[127]

Equipped with these ListAdapters, we were able to recreate a stripped-down
version of our contact list and, more importantly, were given a taste for all of the
ways we could take our data and display it in interactive, beautiful ways.

We finished off the chapter thinking about the use cases between each subclass
of ListAdapters (seeing in total three different subclasses, the CursorAdapter,
the BaseAdapter, and lastly the ArrayAdapter) and again, the hope is to build
intuition into both the backend and frontend application design process.

In the next chapter, we'll continue our brainstorming and try to pull together
everything that we've seen – walking through a handful of practical examples
and discussing ways we could design our backend and frontend to implement
those examples.

Android Databases
in Practice

In the previous chapter, we finally looked at ways we could bind our backend
database to the user interface. At this point, we know about all the various local
storage methods built into the Android OS (Chapter 1, Storing Data on Android
and Chapter 2, Using a SQLite Database), most notably the SQLite database, as well
as ways to take advantage of the SQLite language to execute powerful queries
(Chapter 3, SQLite Queries). Furthermore, we know how to expose our custom SQLite
databases to external applications through content providers (Chapter 4, Using
Content Providers), as well as how to query pre-existing content providers such as the
Contacts content provider (Chapter 5, Querying the Contacts Table).

And so at this point, we've already equipped ourselves with a lot of tools—enough
to start building out full-fledged applications. However, before we do, let's pause
and think.

Should we actually be relying on local SQLite databases? What if something happens
to the user's phone, and their data gets erased? Or more importantly, should each
user have to download the entire dataset, and store it locally on their phones? Keep
in mind that a phone's memory is rather limited and is a fraction of what a desktop
computer would have.

All these questions come into play when we start thinking about how we're going
to design our application. Therefore, in this chapter, we'll start by looking at
some practical use cases for having a localized SQLite database for your Android
application, and then move to other, more typical application designs specifically for
data-centric applications (if your application is going to be a game then likely this
won't apply).

Android Databases in Practice

[130]

Local database use cases
So let's start with different ways one would likely see an Android application use
a localized SQLite database. To clarify, what I mean when I say a localized SQLite
database is one that solely exists on the phone's memory, and more specifically
within the application's allocated memory, and is not backed up/supported by an
external database. This is in contrast to an external database, which would exist on a
server (or in the cloud), and would serve as either a backup to the localized database,
or as a central database, from where all applications would request, insert, update,
and delete data.

For our first example, consider a puzzle-based application that keeps track of all
the user's high scores for each level. The high scores table would have fields such
as the rank of that respective score (that is first, second, third, and so on), the name
of the user who obtained that score, as well as the score itself. Let's go through each
form of data storage, and think about whether or not it would be a sensible way to
accomplish the task at hand:

•	 SharedPreferences: Could we use a Map-based class to accomplish this? I
guess if we only needed one high scores table (as opposed to one per level)
and that table only had a few rows, we could get away with using a simple
Map. But this probably isn't a very natural use of the SharedPreferences
class, and we could probably do much better with a different type of data
storage—so let's pass on this one for now.

•	 External SD cards: As you probably recall, writing to SD cards is extremely
useful for saving and backing up files. In theory though, we could probably
save these tables in a file format—particularly by saving them in Comma
Separated Values (CSV) files (think of these as spreadsheets). Then, we
could just have one CSV file per level, and since a CSV file is structured
like a spreadsheet, we can very easily read these files in and bind them to
something like a GridView. Now, one of the nice things about saving stuff to
an SD card is that your data is naturally backed up. For instance, if the user
had to uninstall and reinstall your application for whatever reason, those
CSV files would still exist and the data would be preserved. On the flip side
though, if for whatever reason the user removed their SD card or tampered
with their SD card, then it's possible that the data may be missing or
corrupted. In any case, using CSV files and external SD cards isn't a terrible
solution, but it may not be the most optimal or natural one.

Chapter 7

[131]

•	 SQLite databases: Given that we're trying to save a series of tables,
naturally we should think about using some kind of database schema. Now,
depending on how many levels there are in our game (and subsequently how
many tables we would need), we could design a database schema that has
one separate table for each level, and for each level we could just point the
Cursor to the correct table's URI. However, consider a scenario where we
have 50 levels. In that case, it might seem a little silly to create 50 identical
tables with 50 unique URIs. And so, what we might do is add an additional
field to our table for level. Then, when we make our query, we could filter the
table by the level column, and sort the remaining sub-table by rank. Using
a SQLite database in this case would be especially slick because of how we
could bind our resulting Cursor directly to the UI through a ListView. Now,
what's the problem here? Well, if the user has to uninstall your application,
then it's extremely likely that your SQLite database will get wiped out from
the phone's memory.

•	 External databases: Using an external database in this case could potentially
get very messy. Why? First, let's think about what our schema would have
to look like. Potentially, we could have one giant table that contains fields
for the device issuing the request (that is, the phone number or username
of the device requesting the data), for the level being requested, and so
on, and then just make queries that contain a bunch of filter clauses. Or, a
nicer solution might be to have a table per level, and for each table include
the additional field of which device that row belongs to. As you can see, in
either case the schema is going to look a little messy, but for now let's stick
with the latter schema. Say your game does moderately well and reaches
100,000 active installs. Furthermore, say your game has 50 levels and for
each high scores table, you keep the top 10 scores. Not unreasonable for a
semi-popular game, right? Well, under this scenario, suddenly your external
database has 50 tables with a million rows per table, leaving you with a fairly
large and memory-intensive database. Then, you have to take into account
that each time the user requests to see a high scores table, he/she will need
to issue an HTTP request to your external database in order to retrieve the
corresponding table. This HTTP request will be several magnitudes slower
than a simple SQLite query to your local database. So what's the plus side
to all this work? This method will allow you to backup every user's high
scores, independent of how many times they uninstall and reinstall your
application, or how many times they change phones, and so on. Another nice
feature is that once you have all of the data from all of your users, you could
potentially create a global high scores table—allowing your users to see not
just what the high scores were for their specific Android device, but what the
all-time high scores were across all users who play your game!

Android Databases in Practice

[132]

And so, even in this scenario there are pros and cons for using a localized database
versus an external database. The questions you'd need to ask yourself in this case are:

•	 How important is it that I backup the user's high scores?
•	 How likely/useful would it be to build a global high scores table?

If your intended game and audience is one that is extremely competitive and you
believe users will get extremely upset if reinstalling your application/switching
phones means losing their high scores history, then it might be wise to use an
external database. However, my best guess is that very few mobile games will cause
user's to become that competitive, in which case it would be significantly more
practical to just have a simple localized database.

The conclusion? For a normal puzzle-based game with a simple high scores table, a
localized database does the trick. The format of the data (that is, a table) makes this
database a natural choice, and the assumption that users won't care about whether
or not their high scores are preserved make implementing a localized database much
more practical than an external database.

Let's consider one more example before we move on. Say you want to create an
application that allows users to better find cafes and coffee shops. Perhaps you want
to add features that allow the user to filter cafes and coffee shops by availability of
space (too many times I find myself wandering into a nearby Starbucks just to find
that all the tables are taken) or by availability of Wi-Fi. Not a bad application—but
where would you find your initial cafe/coffee shop database?

Thankfully, you run into a couple of APIs from various services (that is, Yelp, Zagat,
and so on) which allow you to query their databases, so the data source is no longer
a problem. But now what? How would you design your Android application's
backend? Let's walk through our options again:

•	 SharedPreferences: This time it is pretty easy to see why a method
as simple and lightweight as a SharedPreferences class would not be
appropriate. We'll pass on this one.

Chapter 7

[133]

•	 External SD cards: So, like in our previous example, one possible way to
use an external SD card is to store your data in CSV files (i.e. spreadsheet
format) and then read and write to those files. And so, what we might do
here is upon entering our application for the first time, we make a series of
API calls to load our initial database of cafe/coffee shops. We then write our
data into a CSV file and reference/update this CSV file going forward. So far
so good. But what happens when we want to start filtering our data? Say the
user only wants to see locations near him/her, or only wants to see locations
that have free Wi-Fi. When we're dealing with CSV files, there doesn't exist
a notion of querying this CSV file—a file is a file and our only solution would
be to open a connection to the file, iterate through each row, and manually
pick out the rows that we want. In this example, though it would be slow
and burdensome, in theory we could implement our backend with this SD
card solution. However, it's easy to see how once our schema becomes more
complicated (requiring multiple tables instead of just one), not being able to
execute efficient, complex queries would lead to an extremely poor design
decision. And not to mention some of the issues mentioned previously with
users removing SD cards, corrupting SD cards, and so on. Maybe it's best we
stay away from SD cards in this situation.

•	 SQLite databases: With SQLite databases, again, it's a natural solution given
the inherent table format of our data. We could very easily create a schema
that has fields for name, location, Wi-Fi availability, and so on, and then write
a slew of queries that would quickly filter our data accordingly. Additionally,
with SQLite databases, we would benefit from the ease at which our data
could be bound to the UI. However, what would the mechanics of our
backend look like? Upon reaching the application for the first time, would we
need to hit all APIs and download the entire dataset of all cafes/coffee shops
across the entire nation? If we don't, then we run into the problem of what
happens when the user is traveling, or wants to look up locations outside of
their current city—most likely our only solution would be to call the APIs
for every new location that is introduced. If we do download the entire data
set at once, then depending on the number of cafes/coffee shops in the US,
we could run into issues with memory and performance. In both cases, we
need to methodically choose how we're going to sync and update our SQLite
database with the newest information available through the APIs, an entirely
different problem in and of itself.

Android Databases in Practice

[134]

•	 External databases: With an external database, we can also take advantage of
the inherent table format of our data. And just like with localized databases,
we can still execute quick queries to filter our data. We benefit from having
a centralized database, ensuring that each time a user makes a request for
a subset of data, it will be the most up-to-date data. Furthermore, since our
database would exist in an external server, we don't require any additional
memory on the application side, and we should also see a big performance
gain, as making one request to one external database is much faster than
making several requests to several APIs. Where we lose (compared to the
SQLite database) is what happens when the user is making the same request
repeatedly. For instance, say a user opens the search Activity, searches for
his/her desired list of locations, waits a few seconds for the network request
to come back, and then accidentally closes that Activity. If the user then
re-opens the application and goes back to that Activity, he/she will need
to make the same network request and wait another couple of seconds just to
get the same results back. This can often be a huge nuisance for active users,
and given the relatively short attention span of many mobile users, could be
lethal to the success of your application.

Now that we've run through the list of data storage methods available to us, let's
just quickly summarize some of the pros and cons of each. First off, in terms of
pure implementation, the localized database and the external database were clear
winners. Then, in terms of memory consumption, the external database was a better
choice than the localized database because of how the entire dataset could exist
outside of the application. In terms of performance, the external database was nice
in the sense that instead of hitting multiple APIs, we only need to hit one database
(our own). However, the localized database was nice in the sense that a user could
maneuver in and out of the search Activity without having to make any additional
network calls.

There's no clear winner here, but there is a way to combine the two methods to
design a robust backend that addresses all of the previously discussed issues. This
combined method uses an external database as the central storage unit, but then
uses a localized database as a cache to improve performance. In the next section, let's
hone in on what it means to use a localized SQLite database as a cache for an external
database instead of a standalone database.

Databases as caches
So what exactly is a cache? A cache is often defined as a place in memory that stores
duplicate data so that it can be served faster in the future. In our case, this is exactly
what we're looking for.

Chapter 7

[135]

In our previous example, we saw that by using an external database, we were
able to improve upon memory consumption and, at times, performance, without
compromising implementation. Additionally, we could naturally ensure that all
users have the same data, and that data is the most up-to-date. The only time relying
solely on an external database suffers is when you have users maneuvering around
your application, having to make identical (or similar) network requests to your
external database each time, and then having to repeatedly wait for those network
requests to come back.

One solution is to use a cache and only have to make the network request once. Then,
when the network request finishes, store a duplicate version of the returned data
on a localized database, so that if the user makes the same (or similar) request, our
system only needs to make a local query instead of a network query.

To help you better understand the low-level implementation, let's take a closer look
at how this cache would work.

So the user lands on your search Activity and issues a request. Let's say the request
is for all cafes and coffee shops within three miles from his/her location that also
have free Wi-Fi. One design choice that you'll have to make is how much data should
you cache in this case? Of course, you could issue the request with all of the user's
desired filters, and only cache those results. But what if the user suddenly decides
he/she doesn't care about having free Wi-Fi? Or if the user decides to relax their
search criteria and wants to look for all shops within five miles instead?

While having a cache will definitely improve performance, the real gain comes from
how often your cache is hit. For those who are familiar with designing caches, the
trade-off comes from the frequency at which your cache is hit versus the size of your
cache. In other words, in an extreme case, if you designed your cache to contain
your entire data set, then obviously every request would be a cache hit, and so your
cache would be extremely effective in that sense. However, the fact that you have
your entire data set stored in memory is sub-optimal (and oftentimes impossible
depending on the size of your database), and so your cache would fail on that front.
Trying to find a nice blend of the two is the goal, and so in this situation, instead of
only requesting for locations within three miles that have free Wi-Fi, why not try
requesting for all locations within five miles and exclude the Wi-Fi filter completely?

By caching this request instead, now when the user decides to relax his/her search
conditions from three miles to five miles (or downwards to two miles), you'll already
have all the results; so instead of issuing another network request you can simply
filter your cache for the desired subset of data. Similarly, if your user wants to
remove the Wi-Fi filter, you can quickly query your cache for this data, this time with
the Wi-Fi only filter removed. In both cases, the user hits your cache and saves you
from making a time-consuming network request.

Android Databases in Practice

[136]

The last leg in designing your caching system would just be determining how
often to refresh your cache. Never refreshing your cache is sub-optimal, as it will
only consume more memory over time with each new request you cache, and,
furthermore, you'll run into the problem of having out-of-date data. For instance, say
your user makes a cafe/coffee shop request for their hometown and you cache this
result. However, your caching system is one that never refreshes the cache. A lot can
happen in a year, and a year later when the user pulls out your application again and
makes the same cafe/coffee shop request, he/she will hit the cache and pull the old
data instead of making a fresh request.

On the flip side, by allowing your cache to refresh too frequently, you'll decrease
your cache hit frequency and will end up having to make more network requests
than desired. And so we again have an optimization problem where we wish to
maximize the number of cache hits, while minimizing the amount of memory
consumption needed, and also minimizing the frequency at which we pull stale data.

This simplified optimization problem sits at the heart of every caching system, and
is the one you need to keep in mind when using a localized database to cache your
external database network requests. While there is still much that could be discussed
regarding caches, the goal of this section (and of this whole chapter in general) was
to stir your thought process, and introduce you to one of the many uses for localized
databases, and how they can be used in conjunction with external databases.

In the next section, I'll discuss how a typical data-centric application will look as well
as map out the typical flow of data. Again, what I mean by data-centric applications
are those whose primary functions involve displaying/interacting with some form
of data. This could include everything from social networking applications where
users can read/write messages to each other (the data in this case includes messages,
events, photos — anything that can be shared), to food and dining applications
where users can load details of nearby restaurants. This would typically exclude
many game-based applications, though even game-based applications will at times
need to adopt some kind of external database (for instance, the global high scores
table we discussed earlier). With that, let's shift our focus again and start thinking
about mobile applications from a more holistic perspective—as extensions of external
databases and external applications, rather than simple standalone applications.

Chapter 7

[137]

Typical application design
Up until now, we've only talked about and toyed with ideas regarding backend
application designs. We first thought about the pros and cons of using a completely
localized backend versus a completely external backend, and then thought about
ways of using both in applications to try and get the best of both worlds. One of the
ways we could do this was through using a cache, and in designing the cache alone,
we saw that there were a slew of design decisions that had to be made.

Whether you realized this or not, this whole time you've been analyzing the pros
and cons of different backend designs for different applications, and now we're
ready to focus on a very general design that is extremely practical and is frequently
used in data-centric mobile applications. But enough with words, let's put a picture
to our design:

iPhone Cache

iPhone Client Android Client

HTTP Requests

Android Cache (4)

(3)

Data Cleaners Data Parsers Automated Cron Jobs

Website 1

Google App Engine (Backend) (1)

(2)

Website 2 Website 3

So what exactly is going on here? Let's break this down:

1. First, we have our external, centralized database. This is the heart of our
backend. All applications (whether web or mobile) will reference this
database, and in this way, we can ensure that all data across all mobile
devices will be synced and up-to-date. Furthermore, in this design our
application is no longer platform specific. In other words, one could easily
create an application that works across all mobile devices, both Android and
iOS, since all devices are pointing at the same database.

Android Databases in Practice

[138]

2. The external database also separates the client side (that is, the mobile
applications and the web applications) from the data gathering/parsing/
cleaning side. Here, in the latter, we have all of the processes meant to
go and collect, parse, and clean the backend's data. This might involve
periodically hitting APIs (assuming the API allows you to store copies of its
data), scraping websites (to be discussed later), or, in some cases, manually
inserting new data. Then, once the data comes in, it typically needs to be
parsed and cleaned to fit the specifications of your database. Furthermore,
this whole process of gathering and cleaning data can itself be automated
with the use of CRON jobs (discussed in Chapter 9, Collecting and Storing
Data). So by setting up your application in this way, you are able to conceal
all of this behind the scenes data mining from your users.

3. On the flip side, you have the web applications and the mobile applications
continuously making requests to your external database. These requests
will typically be in the form of HTTP GET and POST requests (getting data
versus inserting/updating data) and will return results in either XML or
JSON format. Again, because these are just standard HTTP network requests,
it is independent of the platform making the request, so you can easily port
applications from one platform to another.

4. Lastly, we have the cache, which is a temporary, localized subset of our
external database, and which exists on the mobile/web application side. As
discussed earlier, these caches are designed to increase performance of the
application by saving us from having to make duplicate network requests.

And there you have it. Again, for the moment this is still very high level, but we've
already seen and discussed the components related to part four of our design and in
the upcoming chapters, we'll look at the first three parts as well.

Chapter 7

[139]

Summary
Even though we didn't look at any code in this chapter, we still managed to
accomplish a lot. We started the chapter by identifying two very realistic needs
(a simple high scores table and then a location/venues database), and worked
through the thought process behind how you would choose an appropriate
storage method.

We saw that for something as simple as a high scores table, a localized SQLite
database was both effective and simple to implement. The only real con to this
approach was not being able to show global high scores tables, but for most
games, this is but a minor feature. However, for our cafe/coffee shop application,
we saw that a localized SQLite database was much less effective than having a
centralized external database, with the only con for the external database solution
being that performance would suffer if repeated, unnecessary network calls were
frequently made.

To address this issue, we turned to caching as a solution—using both external and
local databases and trying to leverage the pros of each method. However, to build
an effective cache requires making several design decisions in order to optimize the
cache hit frequency, while minimizing memory consumption and stale data.

Lastly, we ended the chapter by taking not just a step away from the code, but a step
away from the Android application itself, and tried to look at our application from a
more holistic view. We looked at what a typical data-centric application would look
like, and broke the circulation of data down into four parts. Up to this point, we've
already covered enough to be able to implement part four of the design (the local
cache), and we'll now devote a chapter to each of the remaining three parts. By the
end of this book, the goal is for you to be able to confidently design and implement a
full-scaled data-centric application.

Exploring External Databases
In the previous chapter we introduced the notion of moving away from completely
localized databases that exist solely on the Android client side, and towards
utilizing an external database that could help us in several ways throughout
the development process.

We saw how by using an external database, we were able to improve memory usage
in our Android applications (namely, by not having to store extremely large database
files) without sacrificing too much performance by using caches. Furthermore, we
saw how using an external database allowed us to back up user data (in case a user
switches phones or uninstalls your application), prevent users from seeing stale data
(since all data exists in one central location), as well as potentially see other user's
data (remember the global high scores example).

Using external databases that your application can communicate with over a
network will make you a much more versatile application developer and will
give you the tools to create fully scalable data-centric applications.

Different external databases
So what kinds of external databases are out there anyways? Just like how Android,
iOS, Palm, and so on, are all examples of operating systems which allow you to
develop mobile applications, there are several easily accessible platforms out there
which allow you to host and develop external databases.

One such "platform" is just setting up a traditional dedicated server with database
capabilities. For instance, a popular example of this would be having a dedicated
computer hosting an Apache Tomcat server that's connected to a MySQL database.
I won't go into the details of how you would set up this kind of server-database
connection (primarily because you can do it in any number of ways), but instead let's
just think about high-level concepts and then move on to a simple pros and cons list.

Exploring External Databases

[142]

At a high level, the Apache Tomcat server acts as an intermediary that handles all
incoming and outgoing HTTP requests (that is, network requests). The server itself
listens for all these incoming requests, and upon receiving one, has code that tells it
how to handle the request and subsequently what to return as a response. The code
that handles the request and returns a response is often known as the HTTP servlet,
and in upcoming chapters we'll actually implement a few of these servlets to give
you a better idea for how they work.

Moving on though, the Apache Tomcat server is also connected to a MySQL
database through a Java Database Connectivity driver (JDBC). Once configured,
this will allow us to handle incoming HTTP requests, which then tell the server to
issue a query to the MySQL database. Once the MySQL database retrieves the
query, it will execute it and return the desired data, ultimately to be sent back to
the original requester.

Using this kind of a model, the pros are that it's fully customizable and that you
have full control over how each part is implemented. However, this can be a
double-edged sword and can be a good or bad thing depending on who is handling
the server and the database. Focusing on the database portion, because it is fully
customizable, we have complete control over what database management system
(DBMS) we want to use and furthermore what our database schema should look
like for our given database management system. Throughout the application
development process, we can even elect to switch our DBMS or alter our schema
if we felt it was necessary – for instance, if we needed a more scalable DBMS.

And this is where the problem lies. Though MySQL is by far the world's most used
DBMS and in most cases does a great job, it's not designed to be extremely scalable.
Thus, for large, data-heavy applications, using MySQL would be a sub optimal
design decision. And going back to my original point that using a fully customizable
server and database can be a double-edged sword, one can easily see how flexibility
and responsibility go hand in hand in this case. As we gain more flexibility in the
design/implementation of our system, we simultaneously have more responsibility
when it comes to making intelligent design decisions – otherwise, our application's
performance may deteriorate quickly (that is, imagine if all of Google's data was
hosted on a single computer – what a nightmare).

Other cons are that these systems typically require a higher cost initially, as we need
to actually buy computers/servers. In addition, because these computers/servers are
prone to failure, we'll have to manage them regularly to make sure they don't crash.
Because of their flexibility, many companies and startups opt for this model, though
many end up hiring specialists dedicated to maintaining these servers as well as
backend developers dedicated to building out these servers and databases.

Chapter 8

[143]

Recently, though, the idea of cloud computing has become increasingly popular, and
here I'll introduce two such platforms. The first is Amazon's Web Services (AWS),
which provides a suite of cloud computing services, but specifically Amazon's
Elastic Compute Cloud (EC2) and Amazon's Relational Database Service (RDS).
The primary difference between the two is that Amazon's EC2 is designed to be a
fully-functional and fully-virtual computing environment that allows you to control
as many server/database instances as you'd like (thus making it inherently scalable).
Amazon's RDS, on the other hand, is designed to only act as a cloud database,
though the service contains features which give you the option of scaling your
computation and storage capabilities. Thus, depending on your applications, you
could choose whichever service is most appropriate. Amazon's computing services
are now used by many, including such high-profile startups as Yelp, Reddit, Quora,
FourSquare, Hootsuite, amongst others, and is definitely something to keep in mind
as you design any future backends.

The other cloud computing service is Google's App Engine (GAE) and is one that
we'll take a more in-depth look into. Both AWS and GAE are easy to set up (relative
to the traditional server method) with GAE known to be slightly more user friendly.
However, the primary reason we're going to look at GAE as opposed to AWS
(besides the fact that this is now a Google-themed book!) is that GAE allows you to
run small-scale applications for free (up to certain predefined limits), while AWS
only allows you to access their free pricing tier for a year. In this way, everyone will
get to follow along as we look at more code in later sections.

Finally, the difference between the traditional server/database model and the
new cloud computing model is that we don't actually need to own and manage a
dedicated server! These cloud computing services allow us to essentially "rent out"
server space within Amazon/Google's various data centers and allow us to quickly/
cheaply create reliable, scalable applications. However, what we're giving up is some
control and flexibility in the implementation, and I'll discuss this in the next section
when we talk about Google App Engine's Java Data Object (JDO) databases.

Google App Engine and JDO databases
So what exactly is Google App Engine and why do we need it? Well, GAE is a
platform that enables you to build and host web apps on the same systems that
power Google applications. GAE allows us to quickly develop and deploy our
applications without having to worry about reliability, scalability, hardware, patches
or backups, and so on. However, this reliability and scalability comes at a cost
and that cost is the flexibility with which we can select our DBMS and design our
database schema. In fact, both of these are more or less chosen for you when you
choose to use GAE as your backend!

Exploring External Databases

[144]

GAE comes with a JDO database – meaning that it comes with a special database
that allows you to directly convert Java objects into rows of data called entities
(hence the name). This JDO database is built on top of a special web database called
BigTable, which is designed to be extremely quick and scalable, and is actually not
a relational DBMS like MySQL (see http://en.wikipedia.org/wiki/BigTable).
This primarily means that not all of the features we learned in Chapter 3, SQLite
Queries, about SQL (that is, JOINS) will be applicable here, so your design decisions
regarding how your database schema should look are somewhat limited.

In light of this, Google does a nice job in providing you with a variant of SQL called
GQL, which is a querying language designed for retrieving entities from the App
Engine scalable datastore. Again, there are some differences but the general feel of
GQL is much like that of SQL: where you have SELECT statements with WHERE filters
and other familiar clauses like ORDER BY and LIMIT. In this way, for those who are
only familiar with relational systems like MySQL, it shouldn't be terribly difficult
to pick up.

For the sake of completeness, other differences include not being able to filter
on multiple conditions without having to build an index, not being able to use
inequality filters on multiple columns within the same query, and not being able
to filter for rows with missing fields, amongst others. The reason for all of these
seemingly arbitrary differences involve the architecture of the BigTable database.
Because of the way it's designed and the way it indexes each row that is inserted,
certain queries that are available in relational databases like MySQL will no longer
be applicable with BigTable. However, because of this architecture, BigTable is
inherently scalable, and so when choosing between the two just keep these trade-offs
in mind.

In any case, words can only take you so far and all of these differences and
similarities will become much clearer once we start seeing some actual code. Thus, in
addition to having the Android SDK installed, I invite you to take some time getting
Google App Engine set up using the following URL as a guide:

http://code.google.com/appengine/downloads.html#Download_the_Google_
App_Engine_SDK

At this point, we're ready to dive right into some code and try to piece together a
fully functional Google App Engine backend for our Android applications!

Chapter 8

[145]

GAE: an example with video games
In the next couple of chapters, we'll be going through an example where we wish to
create an application that allows us to see what video games are available through
Blockbuster. This will ultimately involve everything from writing a scraper to fetch
and retrieve those video games from Blockbuster's website, storing these game
objects into our GAE database, writing servlets to get/remove game objects from
our GAE database through HTTP requests, and last but not least finishing it off with
some code for the Android client side.

In this chapter, we'll focus on setting up our database and writing wrapper methods
to help us store, retrieve, update, and delete data for future steps. And so to start,
every GAE application needs to first define a base entity class which essentially
defines what a row is in our database. Note that each entity needs to have an ID or
a key associated with it, so the only field we really need is the one for an ID. Here is
the ModelBase class, which we will use as our base entity class and which we will
override for all objects that we create:

@PersistenceCapable(detachable = "true")
@Inheritance(strategy = InheritanceStrategy.SUBCLASS_TABLE)
public class ModelBase {

 @PrimaryKey
 @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY)
 private Long id;

 public Long getId() {
 return id;
 }
}

So we'll notice that the general structure of the class resembles that of a relatively
simple Java object, but that there are some odd @ tags. Let's look at the first two:

@PersistenceCapable(detachable = "true")
@Inheritance(strategy = InheritanceStrategy.SUBCLASS_TABLE)

The first one tells us that this class needs to be PersistenceCapable. When you
define an object as capable of being persistent, what you're telling the JDO database
is that this object is capable of being stored and retrieved from the datastore. It's
important to declare your entity classes as PersistenceCapable and then declare
the desired fields as being Persistent. You'll see that there's also a parameter called
detachable, which we set to be true. This gives us permission to edit and modify
entities that we retrieved from our database even after we've closed it. Now, this
does not mean that those modifications will persist in the database because it is
closed, but at least we'll have permission to do so.

Exploring External Databases

[146]

Next there is an Inheritance tag which basically means that we're allowed to
create entities that override this base entity, hence inherit the base entity. The other
two tags are pretty self-explanatory. The first declares that our ID (I'll quickly note
that in my case I chose to use a long type as my ID but one can also use a Key type
object) acts as the PrimaryKey for our entity. For people with a background in SQL
this should immediately ring a bell, but basically this just tells the JDO database that
objects of this entity will have a unique long ID field to be used for lookups, and so
on. The last tag is one that we mentioned briefly earlier – namely the Persistent tag
which simply tells us that this long ID field should be stored as its own column in
our table.

And now, for the actual VideoGame object, first notice how we extend (inherit) the
previous ModelBase class and then we continue by defining all desired persistent
fields as well as implementing the constructor, and so on, as follows:

// NOTE HOW WE DECLARE OUR OBJECT AS PERSISTENCE CAPABLE
@PersistenceCapable
public class VideoGame extends ModelBase {

 // NOTE THE PERSISTENT TAGS
 @Persistent
 private String name;

 // USE A SPECIAL GOOGLE APP ENGINE LINK CLASS FOR URLS
 @Persistent
 private Link imgUrl;

 @Persistent
 private int consoleType;

 public VideoGame(String name, String url, String consoleType) {
 this.name = name;
 this.imgUrl = new Link(url);
 // CONVERT ALL CONSOLES TO INTEGER TYPES
 this.consoleType =
 VideoGameConsole.convertStringToInt(consoleType);
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public Link getImgUrl() {
 return imgUrl;
 }

Chapter 8

[147]

 public void setImgUrl(Link imgUrl) {
 this.imgUrl = imgUrl;
 }

 public int getConsoleType() {
 return consoleType;
 }

 public void setConsoleType(int consoleType) {
 this.consoleType = consoleType;
 }

 public static class VideoGameConsole {

 public static final String XBOX = "Xbox";

 public static final String PS3 = "Ps3";

 public static final String WII = "Wii";

 public static final String PSP = "Psp";

 public static final String DS = "NintendoDS";

 public static final String PS2 = "Ps2";

 public static final String[] CATEGORIES = { "Xbox", "Ps3",
 "Wii", "Psp", "NintendoDS", "Ps2" };

 public static int convertStringToInt(String type) {
 if (type == null) { return -1; }
 if (type.equalsIgnoreCase(XBOX)) {
 return 0;
 } else if (type.equalsIgnoreCase(PS3)) {
 return 1;
 } else if (type.equalsIgnoreCase(PS2)) {
 return 2;
 } else if (type.equalsIgnoreCase(PSP)) {
 return 3;
 } else if (type.equals(WII)) {
 return 4;
 } else if (type.equals(DS)) {
 return 5;
 } else {
 return -1;
 }
 }
 }

}

Exploring External Databases

[148]

Once you get the gist of what the @ tags are doing, the rest is pretty self-explanatory.
Here I'm simply declaring a few fields as persistent, and then I implement a
constructor as well as a convenient inner class. The reason why I like having a
convenience class (that is, VideoGameConsole in this case) is that typically in tables,
querying for integers is a lot more efficient and reliable than querying for strings
(one: you don't need to worry about case matching, and two: integer comparisons
are just much more efficient in general than string comparisons). And so, ideally
I'd like a way to convert strings to integers and potentially even be able to map a
group of strings to an integer (that is, "PS3" could get mapped to 1, and so could
"Playstation 3" or "PS 3").

Now that we have our VideoGame entity defined, we're ready to start implementing
our database and telling it how to interact with these VideoGame entities.

The PersistenceManager and Queries
So the first step is defining a way to establish a connection between the server and
the database. Remember back at the beginning of the book when we had to call
methods such as getWritableDatabase() before making any queries? Well the
same is true here, but instead of using a SQLiteOpenHelper class, we will define a
PersistenceManager class as follows:

public final class PMF {

 private static final PersistenceManagerFactory pmfInstance =
 JDOHelper.getPersistenceManagerFactory("transactions-optional");

 private PMF() {
 }

 public static PersistenceManagerFactory get() {
 return pmfInstance;
 }

}

Notice that it is defined as a singleton for improved efficiency, and all we're doing
is opening a persistence (database) manager that can handle transactions (queries).
Then in our future queries, we no longer need to sacrifice performance by repeatedly
requesting for a PersistenceManager and instead can grab the existing instance.

Chapter 8

[149]

Once we have our PersistenceManager defined, we can start implementing our
series of wrappers and we'll begin by looking at how to insert new game objects:

public class VideoGameJDOWrapper {

 /**
 * INSERT A SINGLE VIDEOGAME OBJECT
 *
 * @param g
 * - a video game object
 */
 public static void insertGame(VideoGame g) {
 PersistenceManager pm = PMF.get().getPersistenceManager();
 try {
 pm.makePersistent(g);
 } finally {
 pm.close();
 }
 }

 /**
 * INSERT MULTIPLE VIDEOGAME OBJECTS - MORE EFFICIENT METHOD
 *
 * @param games
 * - a list of video game objects
 */
 public static void batchInsertGames(List<VideoGame> games) {
 PersistenceManager pm = PMF.get().getPersistenceManager();
 try {
 // ONLY NEED TO RETRIEVE AND USE PERSISTENCEMANAGER ONCE
 pm.makePersistentAll(games);
 } finally {
 pm.close();
 }
 }

}

Exploring External Databases

[150]

Not too bad right? The idea is simple and is one that we have seen earlier – simply
grab our instance of the PersistenceManager (that is, our connection to the
database) and make the VideoGame object that's passed in persistent. Again,
remember that when working with GAE, the idea of persistence is the same as
insertion and so by making an object persistent, we are literally telling the database
to convert our entity into a row of our VideoGame table. We can also see that when
adding many entities at once, GAE offers us an efficient way to do so by using batch
inserts. Now let's take a look at how we would get video game objects from our
database. Querying for entities is much more involved than simply inserting entities,
but instead of devoting an entire chapter to all the different ways you can submit
queries (like we did in Chapter 3, SQLite Queries) I'll just show you one convenient
and intuitive way to do it, and if you're curious I invite you to check out:

http://code.google.com/appengine/docs/java/datastore/queries.html

But yes, here's one way to do it and it should remind you of our previous encounters
with the SQLiteQueryBuilder class:

public class VideoGameJDOWrapper {

 public static void insertGame(VideoGame g) {
 . . .
 }

 public static void batchInsertGames(List<VideoGame> games) {
 . . .
 }

 /**
 * GET ALL VIDEO GAMES OF A CERTAIN PLATFORM
 *
 * @param platform
 * - desired platform of games
 * @return
 */
 public static List<VideoGame> getGamesByType(String platform) {
 PersistenceManager pm = PMF.get().getPersistenceManager();

 // CONVERT STRING OF PLATFORM TO INT TYPE
 int type = VideoGameConsole.convertStringToInt(platform);

 // INIT A NEW QUERY AND SPECIFY THE OBJECT TYPE
 Query query = pm.newQuery(VideoGame.class);

Chapter 8

[151]

 // SET THE FILTER - EQUIVALENT TO SQL WHERE FILTER
 query.setFilter("consoleType == inputType");

 // TELL THE QUERY WHAT PARAMETERS YOU WILL SEND
 query.declareParameters("int inputType");
 List<VideoGame> ret = null;
 try {
 // EXECUTE QUERY WITH PARAMETERS
 ret = (List<VideoGame>) query.execute(type);
 } finally {
 // CLOSE THE QUERY AT THE END
 query.closeAll();
 }
 return ret;
 }

 /**
 * GET ALL VIDEO GAMES OF A GIVEN PLATFORM WITH A LIMIT ON THE
 NUMBER OF
 * RESULTS
 *
 * @param platform
 * - desired platform of games
 * @param limit
 * - max number of results to return
 * @return
 */
 public static List<VideoGame> getGamesByTypeWithLimit
 (String platform, int limit) {
 int type = VideoGameConsole.convertStringToInt(platform);
 PersistenceManager pm = PMF.get().getPersistenceManager();
 Query query = pm.newQuery(VideoGame.class);
 query.setFilter("consoleType == inputType");
 query.declareParameters("int inputType");

 // SAME QUERY AS ABOVE BUT THIS TIME SET A MAX RETURN LIMIT
 query.setRange(0, limit);
 List<VideoGame> ret = null;
 try {
 ret = (List<VideoGame>) query.execute(type);
 } finally {
 query.closeAll();
 }
 return ret;
 }

Exploring External Databases

[152]

 /**
 * QUICKEST WAY TO RETRIEVE OBJECT IF YOU HAVE THE ID
 *
 * @param id
 * - row id of the object
 * @return
 */
 public static VideoGame getVideoGamesById(long id) {
 PersistenceManager pm = PMF.get().getPersistenceManager();
 return (VideoGame) pm.getObjectById(VideoGame.class, id);
 }

}

Let's dissect the first method piece by piece:

PersistenceManager pm = PMF.get().getPersistenceManager();

// CONVERT STRING OF PLATFORM TO INT TYPE
int type = VideoGameConsole.convertStringToInt(platform);

// INIT A NEW QUERY AND SPECIFY THE OBJECT TYPE
Query query = pm.newQuery(VideoGame.class);

Here, we grab our PersistenceManager and then we convert the passed-in platform
into an integer type, since we're going to filter by platform. Next, we tell our
PersistenceManager that we want to open a new query (that is, start a new SELECT
statement) and so we call our newQuery() method. Then, we set the details of our
query with the following methods:

// SET THE FILTER - EQUIVALENT TO SQL WHERE FILTER
query.setFilter("consoleType == inputType");

// TELL THE QUERY WHAT PARAMETERS YOU WILL SEND
query.declareParameters("int inputType");

Here we first set our filter and specify on which column we want to perform the
filtering (that is, setting the WHERE part of our query). Next, we set a placeholder for
the parameters that will get passed in (think of the ? placeholders from earlier) and
lastly, we execute the query and pass in the platform type parameter. In the method
that follows, everything remains the same except for an additional LIMIT filter, set
using the following method:

query.setRange(0, limit);

Chapter 8

[153]

The third method we implemented is relatively straightforward – the JDO database
allows you to quickly retrieve an entity if you have their unique key or ID by calling
the PersistenceManager's getObjectById() method. Again, there are many ways to
execute queries in GAE as well as many other clauses and subtleties that I won't go
into in this book, but for now you should have the basic idea down and should be
able to execute the vast majority of queries needed. Finally, let's take a look at how
we would update and delete objects from our database:

public class VideoGameJDOWrapper {

 public static void insertGame(VideoGame g) {

 }

 public static void batchInsertGames(List<VideoGame> games) {

 }

 public static List<VideoGame> getGamesByType(String platform) {

 }

 public static List<VideoGame> getGamesByTypeWithLimit
 (String platform, int limit) {
 . . .
 }

 public static VideoGame getVideoGamesById(long id) {
 . . .
 }

 /**
 * METHOD FOR UPDATING THE NAME OF A VIDEO GAME
 *
 * @param newName
 * - new name of the game
 * @param id
 * - the row id of the object
 * @return
 */
 public static boolean updateVideoGameName(String newName, long id)
{

Exploring External Databases

[154]

 PersistenceManager pm = PMF.get().getPersistenceManager();
 boolean success = false;
 try {
 // AS LONG AS PERSISTENCE MANAGER IS OPEN THEN ANY CHANGES
 TO OBJECT
 // WILL AUTOMATICALLY GET UPDATED AND STORED
 VideoGame v = (VideoGame) pm.getObjectById(VideoGame.
 class, id);
 if (v != null) {
 // KEEP PERSISTENCEMANAGER OPEN
 v.setName(newName);
 success = true;
 }
 } catch (JDOObjectNotFoundException e) {
 e.printStackTrace();
 success = false;
 } finally {
 // ONCE CHANGES ARE MADE - CLOSE MANAGER
 pm.close();
 }
 return success;
 }

 /**
 * DELETE ALL GAMES OF A CERTAIN PLATFORM
 *
 * @param platform
 * - specify the platform of the games you want to delete
 */
 public static void deleteGamesByType(String platform) {
 PersistenceManager pm = PMF.get().getPersistenceManager();
 int type = VideoGameConsole.convertStringToInt(platform);

 // INIT QUERY AGAIN
 Query query = pm.newQuery(VideoGame.class);

 // SAME WHERE FILTERS
 query.setFilter("consoleType == inputType");
 query.declareParameters("int inputType");

 // NOW CALL THE DELETE METHOD
 query.deletePersistentAll(type);
 }

}

Chapter 8

[155]

Again, let's take the first method – our update method—and dissect it piece by piece:

PersistenceManager pm = PMF.get().getPersistenceManager();
boolean success = false;
try {
 VideoGame v = (VideoGame) pm.getObjectById(VideoGame.class, id);
 if (v != null) {
 // KEEP PERSISTENCEMANAGER OPEN
 v.setName(newName);
 success = true;
 }
}

So just like in the previous example, we start by getting our connection with
the JDO database. Then we try to retrieve our VideoGame object by calling the
getObjectById() method and passing in the unique ID of the entity we want
to update. Here's one of the odd things about the PersistenceManager that you
should keep in mind.

Instead of having an explicit update method, which we are used to seeing by now,
with a PersistenceManager as long as the connection is open any changes you
make to the object will automatically get updated in the database. So notice that in
this method, the first step is to retrieve the entity, update it while the connection is
still open, and then close the connection once the entity has been updated.

Of course in this example we only update a specific ID at a time, but one can see how
by keeping this detail in mind, we can easily write a method that updates a group
of entities at once – simply query for a list of them and update each one while the
PersistenceManager is still open.

And last but not least, for our delete method, we see that all the steps are the same
as the previous get methods, except for the last line, where we use the method:

// NOW CALL THE DELETE METHOD
query.deletePersistentAll(type);

Otherwise, all of the prior logic stays the same. And that's it! Now we have a
JDO database wrapper class that allows us to abstract away all of the messy
PersistenceManager syntax, and which gives us a quick way to insert, retrieve,
update, and delete data from our GAE backend! The next step then is to actually
figure out a way to retrieve this video game data, at which point we can simply
wrap it in our VideoGame entity class and push it into our database.

Exploring External Databases

[156]

Summary
In this chapter, we moved away from the Android platform and started expanding
upon our understanding of external databases. We began by taking a cursory look at
what our options were: the traditional dedicated server with the database connection
(for instance an Apache Tomcat server hooked up to a MySQL server) or a cloud
computing server/database combination, such as Amazon Web Services (AWS)
or Google App Engine (GAE).

Google App Engine is nice in that it's much easier to set up and also allows
us to build simple, relatively small-scale applications free of cost and time
constraints. Both cloud-computing solutions come with reliable servers as
well as efficient, scalable databases, but limit the amount of control you have
over your backend – especially when compared to the unlimited freedom you
have when you buy your own dedicated server.

Sticking with GAE, we started building out a simple video games application that
shows us all the games available through Blockbuster. We introduced the notion
of persistence in GAE and wrote our first entity class. We then wrote our own
PersistenceManager singleton class and implemented a convenience class for
getting, inserting, updating, and deleting data from our database.

We covered a lot of ground in this chapter, but we still have a long way to go
before having a complete, fully functional application. In the next chapter, we'll
look at ways to retrieve data and then store it using the wrapper methods written
in this chapter.

Collecting and Storing Data
Onwards we go! In the previous chapter, we introduced a couple of popular external
databases that you could use and decided to develop a fully functional backend
using Google's App Engine (GAE). We managed to create a new project on GAE
and use the PersistenceManager to build out an extremely useful wrapper class
that illustrated some of the concepts central to our JDO database. This wrapper class
will soon be extremely handy to have around as we start inserting real data and
subsequently query that data using our Android application.

So here we are—the next step! For most people trying to build out a data-centric
application, actually getting that data will be extremely difficult and will typically
require a lot of time and money. However, there are many tools and methods at our
disposal which can help us use existing data to fill up our databases. In this next
chapter, we'll take a look at some of those methods, and will finish by inserting our
newly acquired data into our JDO database.

Methods for collecting data
To begin, let's briefly go over two different ways in which you can collect data:

•	 Through an Application Programming Interface (API)
•	 Through web scraping

Collecting and Storing Data

[158]

The first and simplest way is through using an API. For those who have never used
an API before, think of this as a web library created by some third-party company,
which typically allows you to call a handful of functions (almost always executed
as HTTP requests), which then give you access to a subset of their data.

For instance, a common API is the Facebook Graph API which, when authenticated,
allows you to query for a user's profile information or an event's details, and so on.
Essentially, through the API, I can access the same data about a person or event that
I would see on Facebook's website, just through a different channel. This is what I
mean by the company exposing a subset of their data. Another example might be with
Yelp, whose API allows you to query for restaurants and venues when passed a set
of parameters (that is, location). Here, even though I'm not actually on Yelp's web
page, I can still access their data through their API.

Having an API available to collect your data is extremely useful because of how the
data is already there and ready for you to use; depending on the credibility of the
company, oftentimes the data will already be cleaned and well formatted. This saves
you from having to find the data on your own and subsequently clean the data on
your own. The catch, however, is that oftentimes companies will not allow you to
store their data for proprietary reasons, and so depending on what your application
does, you may need to keep this legal issue in mind.

So what exactly happens when no API is available for you to use? Well, then
you'll have to resort to getting that data on your own, and one great way to do
that is through web scraping. In the next section, I'll devote a great deal of time to
explaining what the art of web scraping is and how you go about doing it. For now,
let's end this short section with a discussion on the two popular formats in which
data is often returned by APIs.

The first is called Extensible Markup Language (XML) and is a human-readable and
machine-readable data format that takes the form of a tree and looks very similar to
HTML actually. A simple example of what this tree structure looks like is say you
call the Facebook Graph API and it returns a list of your friends. The root of the tree
might have the tag <friends>, and underneath it may have a series of leaves with
the tag <friend>. Then, each <friend> node might branch off into several descriptor
tags such as <name>, <age>, and so on. In fact, in the examples later on, I'll actually
use XML as the data format of choice because of how it's human readable, so you'll
get to see real examples of what this looks like.

Chapter 9

[159]

The next is called JavaScript Object Notation (JSON) and it is a much more
lightweight data structure than XML. JSON is still machine readable but is less
friendly for human readability. The trade-off though is that parsing JSON tends to be
more efficient, and so really the decision between which to use just depends on how
important human readability is relative to performance. The general structure of
JSON resembles that of a map instead of a tree. Using the same preceding example,
instead of being returned a tree structure with <friends> as the root node, we might
have friends as a key with value equal to a JSON array. The JSON array would then
have a list of friend keys, each of which has a value equal to a JSON object. Finally,
the JSON object would have keys equal to name, age, and so on. In other words, you
can think of JSON structures as series of embedded maps, where many times keys
will point to a sub-map, which then has its own keys, an so on.

So often when using third-party APIs, you'll need to be aware of which data format
they choose to return their data in, and parse the results accordingly. Furthermore,
even when you're implementing web scrapers and finding yourself having to build
your own API, it often helps to pick one of the two data formats and stick with it.
This will make your life a lot simpler when it comes to calling your own API from
external applications and then parsing the returned result. Now, moving on to
web scraping.

A primer on web scraping
Web scraping is the art of structuring web HTML and methodically parsing data
from it. The idea is that HTML should be (to some extent) inherently well structured,
as every open tag (that is,) should be followed by a close tag (that is, </
font>). In this way, HTML if structured correctly, can be viewed as a tree structure
very much like XML often is. Scraping a website can be achieved in any number of
ways, which typically vary with the complexity of the underlying HTML source
code, but at a high level, it involves three steps:

1. Obtain the desired URL, establish a connection to the URL, and retrieve its
source code.

2. Structure and clean the underlying source code so that it becomes a valid
XML document.

3. Run a tree-navigating language like XPath (or XQuery and XSLT), and/or
use regular expressions (REGEX) to parse out desired nodes.

The first step is relatively self-explanatory, but I will note one thing. Often you'll find
yourself needing to scrape some sort of dynamic web page, meaning that the URL
is not going to be static and may change depending on the date, some set of criteria,
and so on. Let's walk through two examples of what I mean here.

Collecting and Storing Data

[160]

The first involves stocks. Let's say you're trying to write a web scraper that can
scrape for the current price of a given stock, say from Yahoo! Finance. Well, first off,
what does the URL look like? Checking really quickly for Google's (ticker GOOG)
current price, we see that the URL of the corresponding web page is:

http://finance.yahoo.com/q?s=GOOG

It's a pretty simple URL and we'll quickly notice that the ticker of the stock gets
passed as a parameter to the URL. In this case, the parameter has key s and value
equal to the ticker. Now it's pretty easy to see how we can quickly construct a
dynamic URL to solve our problem-all we would have to do is write a simple
method as follows:

public void stockScraper(String ticker) {
 String URL_BASE = "http://finance.yahoo.com/q?s=";
 String STOCK_URL = URL_BASE + ticker;

 // CONTINUE SCRAPING STOCK_URL
}

Neat, right? Now let's say we don't just want the current stock price, but we want
to pull all historical prices between two dates. Well, first let's take a look at what a
sample URL would be, again for Google's stock:

http://finance.yahoo.com/q/hp?s=GOOG&a=07&b=19&c=2004&d=02&e=14
&f=2012

So what do we notice here? We notice that the ticker is still being passed as a
parameter with key s, but in addition to that we notice what looks like two distinct
dates being passed with various keys. The dates look like 07/19/2004, most likely
the start date, and 02/14/2012, what appears to be the end date, and they seem to
have key values a through f. In this case, the key values aren't the most intuitive,
and oftentimes you'll see key values of day or d and month or m instead. However,
the idea is simply that with this URL, not only can you dynamically adjust what
the ticker is but depending on what range of dates your user is looking for, you can
adjust those as well. By keeping this idea in mind, you'll slowly learn how to better
decipher various URLs and learn how to make them extremely dynamic and suitable
for your scraping needs.

Chapter 9

[161]

Now, some websites make their requests through POST requests. The difference is
that in POST requests, the parameters are embedded within the request (as opposed
to being embedded within the URL). This way, potentially private data is not visibly
displayed in the URL (though this is just one use case for POST requests). So what
do we do when this is the case? Well, there's no terribly easy answer. Typically,
you'll need to download an HTTP request listener (for browsers like Chrome and
Firefox, simply search for an HTTP request listener add-on). This will then allow you
to see what requests are being made (both GET and POST requests), as well as the
parameters that were passed. Once you know what the parameters are, then the rest
works just like a GET request.

Now, once we have our URL, the next step is to get the underlying source code and
structure it. Of course, this can be a pain to do yourself, but fortunately, there are
libraries out there which will clean and structure the source code for us. The one that
I most frequently use is called HtmlCleaner and can be found at the following URL:

http://htmlcleaner.sourceforge.net/

It's a great library that gives you methods for cleaning and structuring the source
code, navigating the resulting XML document, and ultimately parsing the values and
attributes of the XML nodes. Once our data is cleaned, the last step is simply to walk
through the tree and pick out the pieces of data we want. Now, this is easier said
than done, as there's no really easy way to traverse the tree methodically and reliably
using just Java and its native packages. What I mean by methodically and reliably is
being able to traverse the tree and parse the correct data even when the structure of
the underlying source code has changed slightly.

For instance, say your parsing method was as naive as telling your code to give
you the value of the fifth node. What happens then, when Yahoo! (or whatever site
you're scraping) decides to add a new header to their website, and now the fifth node
becomes the sixth? Even under this relatively simple change to the underlying, your
scraper will break and will start returning you values from an incorrect node, and
so ideally, we'd like to find a method for getting the correct node value regardless of
how the underlying website changes.

Luckily for us, oftentimes frontend engineers will build websites where important
fields will have tags that contain either class or id attributes with unique values.
We can then take advantage of these helpful and descriptive naming conventions
and use a nifty language called XPath. The language itself is fairly self-explanatory
once you see it; in fact, the syntax resembles that of any path (that is, directory path,
URL path, and so on), so I'll simply direct you to the following URL to learn the ins
and outs, if you wish:

http://www.w3schools.com/xpath/

Collecting and Storing Data

[162]

In any case, for now just keep in mind that XPath is a simple language that allows
you to return sets of nodes which are determined by a path. What's special about
XPath is that within the path, you can further refine your search by including various
filters, ones that allow us to return only those div that are of a certain class for
instance. This is where having descriptive class and id attributes comes in handy
because we can drill into the HTML and efficiently find only those nodes
that are important to us. Furthermore, if you still need additional weapons to parse
the resulting XML, you could include regular expressions (REGEX) to help you in
your search.

In the end, the idea is to be as robust as possible with your parsing, as the last thing
you want to do is to have to update your scrapers constantly as small, insignificant
changes are made to the underlying website. Again, sometimes the website changes
dramatically and you'll legitimately have to update your scraper, but the idea is to
write them, again, as robustly as possible.

At this point I'm sure you have plenty of questions. What does the code actually look
like? How do you grab a website's HTML? How do you even use the HtmlCleaner
library? What's an example of XPath? Previously, my goal was to lead you to a high-
level understanding of what web scraping is, and along the way, I introduced a lot of
different technologies and techniques that one would use. Now, let's get our hands
dirty with some code and see each of the preceding steps in action. Here are steps
one and two for scraping our Blockbuster video games data:

public class HTMLNavigator {

 // STEP 1 - GET THE URL'S SOURCE CODE
 public static CharSequence navigateAndGetContents(String url_str)
 throws IOException {
 URL url = new URL(url_str);

 // ESTABLISH CONNECTION TO URL
 URLConnection conn = url.openConnection();
 conn.setConnectTimeout(30000);
 String encoding = conn.getContentEncoding();
 if (encoding == null) {
 encoding = "ISO-8859-1";
 }

 // WRAP BUFFERED READER AROUND INPUT STREAM
 BufferedReader br = new BufferedReader
 (new InputStreamReader(conn.getInputStream(), encoding));
 StringBuilder sb = new StringBuilder();
 try {
 String line;

Chapter 9

[163]

 while ((line = br.readLine()) != null) {
 sb.append(line);
 sb.append('\n');
 }
 } finally {
 br.close();
 }
 return sb;
 }
}

So first we have a simple convenience class that allows us to get the source code of
a passed-in URL. It simply opens a connection, sets a few standard web parameters,
and then reads the input stream. We use a StringBuilder to efficiently construct
one large string containing each line of the input stream, and finally close all
connections and return the string. This string will then be the underlying HTML
of the passed-in URL, and is what we'll need in the next step to construct a clean,
organized XML document. The code for that is as follows:

import org.htmlcleaner.CleanerProperties;
import org.htmlcleaner.HtmlCleaner;
import org.htmlcleaner.TagNode;
import org.htmlcleaner.XPatherException;

import app.helpers.HTMLNavigator;
import app.types.VideoGame;

public class VideoGameScraper {

 private static String content;

 private static final String BASE_URL = "http://www.blockbuster.com/
 games/platforms/gamePlatform";

/**
 * QUERY FOR GAMES OF CERTAIN PLATFORM
 *
 * @param type
 * the platform type
 * @return
 * @throws IOException
 * @throws XPatherException
 */

Collecting and Storing Data

[164]

 public static List<VideoGame> getVideoGamesByConsole(String type)
 throws IOException, XPatherException {
 // CONSTRUCT FULL URL
 String query = BASE_URL + type;

 // STEPS 1 + 2 – GET AND CLEAN THE DYNAMIC URL
 TagNode node = getAndCleanHTML(query);

 // STEP 3 – PARSE AND ADD GAMES
 List<VideoGame> games = new ArrayList<VideoGame>();

 . . .

 return games;
 }

 /**
 * CLEAN AND STRUCTURE THE PASSED IN HTML
 *
 * @param result
 * the underlying html
 * @return
 * @throws IOException
 */
 private static TagNode getAndCleanHTML(String result) throws
 IOException {
 String content = HTMLNavigator.navigateAndGetContents(result).
 toString();
 VideoGameScraper.content = content;

 // USE HTMLCLEANER TO STRUCTURE HTML
 HtmlCleaner cleaner = new HtmlCleaner();
 CleanerProperties props = cleaner.getProperties();
 props.setOmitDoctypeDeclaration(true);
 return cleaner.clean(content);
 }

 .
 .
 .

}

Chapter 9

[165]

And so here we first write a simple method which allows us to connect to the
resulting URL and grab its underlying source code. We then take that result and pass
it to a cleaning method which instantiates a new instance of our HtmlCleaner class
and calls the clean() method. This method will structure the underlying HTML
into a well-formed XML document, and return the root of the XML as a TagNode
object. The last step is simply looking at the underlying source code, determining
what the correct XPaths are, and then running those over the given root TagNode.
The abridged source code of Blockbuster's video game rental page looks like the
following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.
w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html lang="en" xml:lang="en" xmlns="http://www.w3.org/1999/xhtml">
<head>
<body class="full">
<script type="text/javascript">
<div class="body clearDiv">
<div id="pageMask"> </div>
<div id="boxPopup"> </div>
<div id="head" class="head">
<style type="text/css">
<div>
<div id="gamesNav" class="secondaryNav">
<script type="text/javascript" language="javascript">

<div class="page clearDiv">
<div class="main contentsMain clearDiv">
<div class="primary clearDiv">

<img align="right" src="/content/v.5.134.3.20120309142008/img/games/
platforms/gameXboxOrig.gif" alt="Xbox Games">
<h1>Action & Adventure Video Games</h1>
<div class="pagination">
<div class="gb6 listViewHeader">
<div class="">

<div id="4453" class="addToQueueEligible game sizeb gb6 bvr-
gamelistitem ">
<mkt marketingitemid="4453" catalystinfo="A" listname="gameActionAdve
nture"></mkt>
<a onmouseover="if(DndUtil.windowLoaded){ new GameRollover(this); }"
href="/games/catalog/gameDetails/4136" title="Superman Returns: The
Video Game">

Collecting and Storing Data

[166]

 <img class="box" height="143" width="100" src="http://images.
 blockbuster.com/is/amg/games/cov200/drg200/g256/g25653wauzo.
 jpg?wid=100&hei=143">

<div class="details">
<h4>
<a onmouseover="if(DndUtil.windowLoaded){new GameRollover(this);}"
href="/games/catalog/gameDetails/4136" title="Superman Returns: The
Video Game">Superman Returns: The Video Game
</h4>
<dl class="release">
<dl class="rated">
<div class="platform">
<dl class="movieInfo">
<div class="summary ">
<p class="readMore">
<div class="rolloverDetailsDiv" contentsrc="/esi/catalog/
gameRollover/4136/false"> </div>
</div>
<div class="movieOptions">
<div id="movieRating" class="ratingWidget">
</div>
</div>
...

However, note that that this source code is as of the date I'm writing this and is not
guaranteed to remain the same. However, from this source code above, we can see
that each game is listed in a div tag with class addToQueueEligible game sizeb
gb6 bvr-gamelistitem. This is somewhat of a long class name but we can have
some confidence that by searching for divs with this class tag, we'll find video
games and only video games because of how the class tag involves adding eligible
games to a queue.

Now, once we get to those desired divs, we see that the nodes we want are
simply the first a node, as well as that a node's corresponding img tag. Hence,
in order to get the title and image URLs, respectively, our desired XPaths
should look as follows:

//div[@class='addToQueueEligible game sizeb gb6 brv-
gamelistitem']/a[1]
//div[@class='addToQueueEligible game sizeb gb6 brv-
gamelistitem']/a[1]/img

Chapter 9

[167]

With this, let's now take a look at the full code of our scraper:

import org.htmlcleaner.CleanerProperties;
import org.htmlcleaner.HtmlCleaner;
import org.htmlcleaner.TagNode;
import org.htmlcleaner.XPatherException;

import app.helpers.HTMLNavigator;
import app.types.VideoGame;

public class VideoGameScraper {

 private static String content;

 // XPATH FOR GETTING TITLE NAMES
 private static String TITLE_EXPR = "//div[@class='%s']/a[1]";

 // XPATH FOR GETTING IMAGE URLS
 private static String IMG_EXPR = "//div[@class='%s']/a[1]/img";

 // BASE OF BLOCKBUSTER URL
 public static final String BASE_URL = "http://www.blockbuster.com/
 games/platforms/gamePlatform";

 /**
 * QUERY FOR GAMES OF CERTAIN PLATFORM
 *
 * @param type
 * the platform type
 * @return
 * @throws IOException
 * @throws XPatherException
 */
 public static List<VideoGame> getVideoGamesByConsole(String type)
 throws IOException, XPatherException {
 // CONSTRUCT FULL URL
 String query = BASE_URL + type;

 // USE HTMLCLEANER TO STRUCTURE HTML
 TagNode node = getAndCleanHTML(query);

 // ADD GAMES
 List<VideoGame> games = new ArrayList<VideoGame>();

Collecting and Storing Data

[168]

 games.addAll(grabGamesWithTag(node, "addToQueueEligible
 game sizeb gb6 bvr-gamelistitem ", type));
 return games;
 }

 /**
 * GIVEN THE STRUCTURED HTML, PARSE OUT NODES OF THE PASSED IN TAG
 *
 * @param head
 * the head of the structured html
 * @param tag
 * the tag we are looking for
 * @param type
 * the platform type
 * @return
 * @throws XPatherException
 */
 private static List<VideoGame> grabGamesWithTag(TagNode head,
 String tag, String type) throws XPatherException {
 // RUN VIDEO GAME TITLE AND IMAGE XPATHS
 Object[] gameTitleNodes = head.evaluateXPath(String.format
 (TITLE_EXPR, tag));
 Object[] imgUrlNodes = head.evaluateXPath(String.format
 (IMG_EXPR, tag));

 // ITERATE THROUGH VIDEO GAMES
 List<VideoGame> games = new ArrayList<VideoGame>();
 for (int i = 0; i < gameTitleNodes.length; i++) {
 TagNode gameTitleNode = (TagNode) gameTitleNodes[i];
 TagNode imgUrlNode = (TagNode) imgUrlNodes[i];
 // BY LOOKING AT THE HTML, WE CAN DETERMINE
 // WHICH ATTRIBUTES OF THE NODE TO PULL
 String title = gameTitleNode.getAttributeByName("title");
 String imgUrl = imgUrlNode.getAttributeByName("src");

 // BUILD OUR VIDEO GAME OBJECT AND ADD TO LIST
 VideoGame v = new VideoGame(title, imgUrl, type);
 games.add(v);
 }
 return games;
 }

Chapter 9

[169]

 /**
 * CLEAN AND STRUCTURE THE PASSED IN HTML
 *
 * @param result
 * the underlying html
 * @return
 * @throws IOException
 */
 private static TagNode getAndCleanHTML(String result) throws
 IOException {
 . . .
 }

}

And that's it! Most of this code we've already seen earlier, so really it's just the
grabGamesWithTag() method that we should hone in on. The first part of the
method is to take the HTML patterns that we saw earlier (in the source code of the
website) and combine them with our XPath formats. At this point, we have a valid
XPath that will lead us to both the titles of the video games, as well as to the image
URLs of the video games. The method from HtmlCleaner that we need to use to
actually run this XPath command is as follows:

Object[] gameTitleNodes = head.evaluateXPath(String.format
(TITLE_EXPR, tag));

This will return a list of Objects which can then be cast to individual TagNode
objects. What we need to do then is loop through each Object in our array, cast it
to a TagNode, and extract either the value of the node or an attribute of the node to
obtain the desired data. We can see that in the following part of the method:

// ITERATE THROUGH VIDEO GAMES
List<VideoGame> games = new ArrayList<VideoGame>();
for (int i = 0; i < gameTitleNodes.length; i++) {
 TagNode gameTitleNode = (TagNode) gameTitleNodes[i];
 TagNode imgUrlNode = (TagNode) imgUrlNodes[i];
 // BY LOOKING AT THE HTML, WE CAN DETERMINE
 // WHICH ATTRIBUTES OF THE NODE TO PULL
 String title = gameTitleNode.getAttributeByName("title");
 String imgUrl = imgUrlNode.getAttributeByName("src");

 // BUILD OUR VIDEO GAME OBJECT AND ADD TO LIST
 VideoGame v = new VideoGame(title, imgUrl, type);
 games.add(v);
}

Collecting and Storing Data

[170]

In both cases here, the values that we need are specific attributes of the node, as
opposed to the value of the node. Had it been a value, our code would have looked
more like the following:

List<VideoGame> games = new ArrayList<VideoGame>();
for (int i = 0; i < gameTitleNodes.length; i++) {
 TagNode gameTitleNode = (TagNode) gameTitleNodes[i];
 TagNode imgUrlNode = (TagNode) imgUrlNodes[i];

 String title = gameTitleNode.getText().toString();
 String imgUrl = imgUrlNode.getAttributeByName("src");

 // BUILD OUR VIDEO GAME OBJECT AND ADD TO LIST
 VideoGame v = new VideoGame(title, imgUrl, type);
 games.add(v);
}

At this point, we've run through a quick primer on web scraping. Again, web
scraping is a technique and an art that will take time to get used to and master,
but is a great skill to have and is one that will open up countless opportunities for
mining data across the Web. For now, focus on the concepts that were introduced
in this chapter, as opposed to the actual code. The reason I say this is because how
your code looks will very much depend on what web page you're trying to scrape.
What won't change are the concepts behind the scraping, and so use those three
steps mentioned in this chapter as a guide to how you can write a scraper for
any web page.

Extending HTTP servlets for
GET/POST methods
Now that we have our web scraper written, we need a way to take the VideoGame
objects that are returned, and actually store them in our database. Furthermore, we
need a way to communicate with our server once it's up and running and tell it to
scrape the site and insert it into our JDO database. Our gateway for communicating
with our server is through what's called an HTTP servlet—something that we briefly
mentioned earlier in the book.

Chapter 9

[171]

Setting up your backend in this way will be especially useful when we talk later
about CRON jobs which, in order to automatically run some kind of function, require
a servlet to communicate with (more on this soon). For now though, let's see how we
can extend the HttpServlet class and implement its doGet() method, which will
listen and handle all HTTP GET requests sent to it. But first, what exactly is an HTTP
GET request? Well, an HTTP web request is simply a user making a request to some
server that will be sent over the network (that is, the Internet). Depending on the
type of request, the server will then handle and send an HTTP response back to the
user. There are then two common types of HTTP requests:

•	 GET request—web requests that are only meant to retrieve data. These
web requests will typically ask the server to query for some kind of data
to be returned.

•	 POST request—web requests that submit data to be processed. Typically, this
will ask the server to insert some kind of data that was submitted by the user.

In this case, since we aren't getting any data for a user or submitting any data from a
user (in fact we're not really interacting with any users at all), it really doesn't make a
difference which type of request we use, so we'll stick with the simpler GET request
as follows:

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

// EXTEND THE HTTPSERVLET CLASS TO MAKE THIS METHOD AVAILABLE
// TO EXTERNAL WEB REQUESTS, NAMELY CLIENTS AND CRON JOBS
public class VideoGameScrapeServlet extends HttpServlet {

 private ArrayList<VideoGame> games;

 /**
 * METHOD THAT IS HIT WHEN HTTP GET REQUEST IS MADE
 *
 * @param request
 * a servlet request object (any params passed can be retrieved
 * with this)
 * @param response
 * a servlet response that you can embed data back to user

Collecting and Storing Data

[172]

 * @throws IOException
 * @throws ServletException
 */
 public void doGet(HttpServletRequest request, HttpServletResponse
 response) throws IOException, ServletException {
 games = new ArrayList<VideoGame>();
 String message = "Success";
 try {
 // GRAB GAMES FROM ALL PLATFORMS
 games.addAll(
 VideoGameScraper.getVideoGamesByConsole(VideoGameConsole.DS));
 games.addAll(
 VideoGameScraper.getVideoGamesByConsole(VideoGameConsole.PS2));
 games.addAll(
 VideoGameScraper.getVideoGamesByConsole(VideoGameConsole.PS3));
 games.addAll(
 VideoGameScraper.getVideoGamesByConsole(VideoGameConsole.PSP));
 games.addAll(
 VideoGameScraper.getVideoGamesByConsole(VideoGameConsole.WII));
 games.addAll(
 VideoGameScraper.getVideoGamesByConsole(VideoGameConsole.XBOX));
 } catch (Exception e) {
 e.printStackTrace();
 message = "Failed";
 }

 // HERE WE ADD ALL GAMES TO OUR VIDEOGAME JDO WRAPPER
 VideoGameJDOWrapper.batchInsertGames(games);

 // WRITE A RESPONSE BACK TO ORIGINAL HTTP REQUESTER
 response.setContentType("text/html");
 response.setHeader("Cache-Control", "no-cache");
 response.getWriter().write(message);
 }
}

Chapter 9

[173]

So the method itself is quite simple. We already have our
getVideoGamesByConsole() method from earlier, which goes and does all the
scraping, returning a list of VideoGame objects as a result. We then simply run it
for every console that we want, and at the end use our nifty JDO database wrapper
class and call its batchInsertGames() method for quicker insertions. Once that's
done, we take the HTTP response object that is passed in and quickly write some
kind of message back to the user to let them know whether or not the scraping
was successful. In this case, we don't make use of the HttpServletRequest object
that gets passed in, but that object will come in very handy if the requester passes
parameters into the URL. For instance, say you wanted to write your servlet in a way
that only scrapes one specific game platform instead of all of them. In that case, you
would need some way of passing a platform-type parameter to your servlet, and
then extracting that passed-in parameter value within the servlet. Well, just like how
earlier we saw that Yahoo! Finance allows you to pass in tickers with key value s, to
pass in a platform type, we could simply do the following:

http://{your-GAE-base-url}.appspot.com/videoGameScrapeServlet?type
=Xbox

Then, on the servlet side do:

 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException {
 String type = request.getParameter("type");
 games = new ArrayList<VideoGame>();
 String message = "Success";
 try {
 // GRAB GAMES FROM SPECIFIC PLATFORM
 games.addAll(VideoGameScraper.getVideoGamesByConsole(type));
 } catch (Exception e) {
 e.printStackTrace();
 message = "Failed";
 }

 // ADD GAMES TO JDO DATABASE
 VideoGameJDOWrapper.batchInsertGames(games);

 // WRITE A RESPONSE BACK TO ORIGINAL HTTP REQUESTER
 response.setContentType("text/html");
 response.setHeader("Cache-Control", "no-cache");
 response.getWriter().write(message);
 }

Collecting and Storing Data

[174]

Pretty simple, right? You just have to make sure that the key used in the URL
matches the parameter you request within the servlet class. Now, the last and final
step for getting this all hooked together is defining the URL path in your GAE
project—namely, making sure your GAE project knows that the URL pattern actually
points to this class you just wrote. This can be found in your GAE project's /war/
WEB-INF/ directory, specifically in the web.xml file. There you'll need to add the
following. To make sure that the servlet name and class path matches the given
URL pattern:

<?xml version="1.0" encoding="utf-8"?>

<web-app xmlns="http://java.sun.com/xml/ns/javaee" version="2.5">
 <servlet>
 <servlet-name>videoGameScrapeServlet</servlet-name>
 <servlet-class>app.httpservlets.VideoGameScrapeServlet</servlet-
class>
 </servlet>
 <servlet-mapping>
 <servlet-name>videoGameScrapeServlet</servlet-name>
 <url-pattern>/videoGameScrapeServlet</url-pattern>
 </servlet-mapping>
</web-app>

At this point, we have our scraper, we have our JDO database, and we even have our
first servlet all hooked up and ready to go. The last part is scheduling your scraper
to run periodically; that way, your database has the latest and most up-to-date data,
without you having to sit in front of your computer every day and manually call
your scraper. In this next section, we'll see how we can use CRON jobs to accomplish
just this.

Scheduling CRON jobs
First, let's define what a CRON job is. The term cron originally referred to a time-
based job scheduler in Unix that allowed you to schedule jobs/scripts to be run
periodically at specific times. The same concept can be applied to web requests, and
in our case, the goal is to run our web scraper and update the data in our database
periodically and without our interference. Another reason why GAE is so convenient
to use is because of how easy the platform makes scheduling CRON jobs. To do so,
we simply need to create a cron.xml file in the /war/WEB-INF/ directory of our GAE
project. In this XML file, we add the following code:

Chapter 9

[175]

<?xml version="1.0" encoding="UTF-8"?>
<cronentries>

 <cron>
 <url>/videoGameScrapeServlet</url>
 <description>Scrape video games from Blockbuster</description>
 <schedule>every day 00:50</schedule>
 <timezone>America/Los_Angeles</timezone>
 </cron>

</cronentries>

This is pretty self explanatory. First, we define root tags named <cronentries>
and within these, we can insert any number of <cron> tags—each one denoting a
scheduled process. In these <cron> tags, we need to tell the scheduler what the URL
that we want to hit is (this will be relative to the root URL, of course), as well as the
schedule itself (in our case, it's everyday at 12:50 A.M.). Other optional tags are a
description tag, a time-zone tag, and/or a target tag that allows you to specify which
version of your GAE project to invoke the specified URL.

Now, in my case, I asked the scheduler to run the job every day at 12:50 A.M. (PST),
but examples of other schedule formats are as follows:

every 12 hours
every 5 minutes from 10:00 to 14:00
2nd,third mon,wed,thu of march 17:00
every monday 09:00
1st monday of sep,oct,nov 17:00
every day 00:00

I won't go into the exact syntax of the scheduler tags, but you can see that it's pretty
intuitive. However, for those of you who would like to learn more about CRON jobs
in GAE or look at some of the less commonly used features, feel free to check out the
following URL for a comprehensive look at CRON jobs:

http://code.google.com/appengine/docs/java/config/cron.html

But as far as our example goes, what we did previously will suffice and so we'll
stop here!

Collecting and Storing Data

[176]

Summary
In this chapter, we yet again covered a lot of ground. We started off the chapter
simply looking at various ways to collect data. In some cases, convenient APIs
released by other companies are readily available for us to use and query (though
one must be careful about legal issues when it comes to storing that data). However,
many times we'll find ourselves needing to go out and grab that data ourselves, and
this can be done through web scraping.

In the next section, we went through a primer on web scraping—starting with the
high-level concepts behind what web scraping is and what steps you need to take
to perform it, and ending with the implementation. The example we went through
involved scraping Blockbuster's site for the latest video games available for rent, and
in the process, we wrote our first XPath expressions and implemented our first HTTP
servlet.

While implementing our HTTP servlet, we briefly discussed the two common types
of HTTP requests (GET and POST requests) and proceeded to implement an HTTP
GET request that would allow us to call our video game scraper class, collect the
aggregated VideoGame objects, and then insert them into our JDO database using our
convenient wrapper class from the previous chapter.

Finally, we ended the chapter by looking at ways in which we could schedule the
scraping of Blockbuster's site in order to ensure the latest and most up-to-date data,
without having to manually call the scraper ourselves every day. We introduced
a special technology known as CRON jobs and implemented one using the
GAE platform.

In the next and last chapter, we'll try to bring everything we learned together. More
specifically, now that the data collection and insertion parts of our system are up and
running, we'll implement a few more servlets that will allow us to make an HTTP
GET request and retrieve various types of data. Then, we'll go through the client side
of the code, and look at how you can make these GET requests from the Android
application and parse the response for the desired data.

Bringing it Together
At last, it's time to bring everything together. Earlier in Chapter 8, Exploring External
Databases, we started our example of writing a Blockbuster games application
by creating a new Google App Engine (GAE) project and building up the JDO
database. We first defined what our VideoGame table should look like, and then we
wrote a handful of convenient wrapper methods which would allow us to retrieve,
insert, update, and/or delete VideoGame data from our backend. Then in Chapter 9,
Collecting and Storing Data, we looked at various ways in which we could collect data,
either by using convenient APIs or by writing scrapers to do the dirty work for us. In
our example, a scraper was necessary and so we wrote some code to first clean and
structure Blockbuster's game rental page, before finally navigating and parsing the
desired data. The last step was simply to reintroduce ourselves to HTTP servlets and
look at how we could implement a servlet that, when hit, would scrape and update
our database with the latest games.

Now, we'll finish off the application by writing an HTTP servlet that will actually
query and return data (as opposed to our earlier example, which simply returned a
success or failure message), and, once returned, we'll write some simple XML parsers
and list adapters to show you what to do with the data once it's on the mobile
side. Then, you'll have a fully functional backend that will periodically scrape and
update its own data, a series of HTTP servlets that will allow you to retrieve data
independent of the platform, and an Android application that will parse the data and
bind it to the UI for the user to see.

Implementing HTTP GET requests
In the last chapter, we briefly went over the difference between a GET and POST
request. The next step in our application development is writing a few classes on
the GAE server side which will allow us to hit a URL and get back a list of video
game objects.

Bringing it Together

[178]

This means we need to override another HTTP servlet which will likely take a
parameter that indicates which game platform we're looking for. Intuitively, once we
know the platform we're looking for, we recall from earlier that one of our wrapper
methods for our JDO database involved querying for all games of a certain platform.
Hence, we'll likely need to utilize our JDO wrapper class again.

However, you might also recall that our JDO database returns rows not as strings but
as objects, and so we'll need to take the additional step of converting each VideoGame
object into some kind of readable, formatted string, whether as XML or JSON. With
these initial thoughts and intuitions at hand, let's take a look at how you would
implement this new GET request:

public class GetVideoGames extends HttpServlet {

 // HTTP GET REQUEST SINCE WE'RE REQUESTING FOR DATA
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws IOException, ServletException
{
 String platform = request.getParameter("type");

 // USE OUR JDO WRAPPER TO QUERY FOR GAMES BY PLATFORM
 List<VideoGame> games =
 VideoGameJDOWrapper.getGamesByType(platform);

 // WRAP GAMES INTO XML FORMAT
 String ret = GamesToXMLConverter.convertGamesToXML(games);

 // SET THE RESPONSE TYPE TO XML
 response.setContentType("text/xml");
 response.setHeader("Cache-Control", "no-cache");

 // WRITE DATA TO RESPONSE
 response.getWriter().write(ret);
 }

}

Chapter 10

[179]

Everything should look familiar and the logic is fairly simple. The only part that's
unclear is near the end when I pass in a list of VideoGame objects and get back
a string. As the name of the class suggests, I wrote a simple class which takes
VideoGame objects, strips out their fields, and organizes them into well-formatted
XML code (again, you could use JSON as well). Let's take a quick look at how I
defined my GamesToXMLConverter class:

public class GamesToXMLConverter {

 public static String convertGamesToXML(List<VideoGame> games) {
 String content = "";
 for (VideoGame g : games) {
 // WRAP EACH GAME IN ITS OWN TAG
 content += convertGameToXml(g);
 }
 // WRAP ALL GAME TAGS TOGETHER INTO ROOT TAG

 String ret = addTag("games", content);
 return ret;
 }

 /**
 * METHOD FOR CONVERTING OBJECT TO XML FORMAT
 *
 * @param g
 * a video game object
 * @return
 */
 public static String convertGameToXml(VideoGame g) {
 String content = "";
 // ADD TAG FOR NAME
 content += addTag("name", g.getName().replaceAll("&",
 "and"));

 // ADD TAG FOR ID
 content += addTag("id", String.valueOf(g.getId()));

 // ADD TAG FOR IMAGE IF NOT NULL
 if (g.getImgUrl() != null) {
 content += addTag("imgUrl",
 g.getImgUrl().getValue());
 }

Bringing it Together

[180]

 // ADD TAG FOR TYPE
 content += addTag("type",
 VideoGameConsole.convertIntToString(g.getConsoleType()));

 // WRAP ENTIRE GAME IN <game> TAGS
 String ret = addTag("game", content);
 return ret;
 }

 public static String addTag(String tag, String value) {
 return ("<" + tag + ">" + value + "</" + tag + ">");
 }

}

And voila – nothing too complicated. Really, you can write your XML/JSON
converters in any way you'd like – in fact, if you search hard enough, I'm willing to
bet there are convenient libraries out there which are designed to do this for you.
However, as is the theme of this book, focus more on the concepts and less on my
actual code – the idea is you reach into your JDO database and get back a list of
objects and from there you simply need to think of a clean way to write those objects
into the HttpServletResponse object that is returned.

And again, just like with our previous HTTP servlet, in order for our GAE project to
recognize this as a valid servlet, we need to define it as one in the /war/WEB-INF/
web.xml file:

<?xml version="1.0" encoding="utf-8"?>

 <servlet>
 <servlet-name>getVideoGames</servlet-name>
 <servlet-class>app.requests.GetVideoGames</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>getVideoGames</servlet-name>
 <url-pattern>/getVideoGames</url-pattern>
 </servlet-mapping>

And once we have our name and URL pattern defined, we simply deploy the project
and hit the following URL:

http://{your-project-name}.appspot.com/getVideoGames?type={type}

Chapter 10

[181]

And we're done. For those following along, I invite you to check it out and see if
you get a nicely formatted list of data. Otherwise, feel free to check out the following
links to see my results:

http://entertainmentapp.appspot.com/getVideoGames?type=Xbox

http://entertainmentapp.appspot.com/getVideoGames?type=Ps3

The following is a screenshot for those reading this on the go:

And now, let's move it back to the Android side and see how we would both make
the request and then handle/parse the result.

Back to Android: parsing responses
Now that we have our backend completely finished, all that remains is implementing
these HTTP requests from the Android, parsing out the data, and then binding this
data to the UI once it's been retrieved (though this will likely be a rehash of Chapter 6,
Binding to the UI).

Bringing it Together

[182]

To start, you'll need to build an HTTP client which will allow you to make GET/
POST requests. What this HTTP client essentially does is it acts as a vehicle for
which you can make various HTTP requests. The HTTP client requires that you set
some HTTP parameters for how the request should be made. Then, based on those
parameters, the client knows how to handle each request accordingly. For instance,
one such parameter is telling the HTTP client how to handle HTTP versus HTTPS
requests (that is, requests made through an unsecured channel versus a secured one).
Each channel requires that you specify a different port, so you'll have to define these
accordingly in your client. In the following code you can see an HTTP client which is
configured for both HTTP and HTTPS requests:

public class ConnectionManager {

 public static DefaultHttpClient getClient() {
 DefaultHttpClient ret = null;

 // SET PARAMETERS
 HttpParams params = new BasicHttpParams();
 HttpProtocolParams.setVersion(params, HttpVersion.HTTP_1_1);
 HttpProtocolParams.setContentCharset(params, "utf-8");
 params.setBooleanParameter("http.protocol.expect-continue",
 false);

 // REGISTER SCHEMES FOR HTTP AND HTTPS REQUESTS
 SchemeRegistry registry = new SchemeRegistry();
 registry.register(new Scheme("http",
 PlainSocketFactory.getSocketFactory(), 80));
 final SSLSocketFactory sslSocketFactory =
 SSLSocketFactory.getSocketFactory();
 sslSocketFactory.setHostnameVerifier
 (SSLSocketFactory.BROWSER_COMPATIBLE_HOSTNAME_VERIFIER);
 registry.register(new Scheme("https",
 sslSocketFactory, 443));

 ThreadSafeClientConnManager manager =
 new ThreadSafeClientConnManager(params, registry);
 ret = new DefaultHttpClient(manager, params);
 return ret;
 }

}

Chapter 10

[183]

Once you have that, I prefer to build some simple GET/POST wrapper methods,
which when passed an HTTP client and a URL will return the result as a string:

public class GetMethods {

 /**
 * MAKE AN HTTP GET REQUEST
 *
 * @param mUrl
 * the url of the request you're making
 * @param httpClient
 * a configured http client
 * @return
 */
 public static String doGetWithResponse(String mUrl,
 DefaultHttpClient httpClient) {
 String ret = null;
 HttpResponse response = null;

 // INITIATE THE GET METHOD WITH THE DESIRED URL
 HttpGet getMethod = new HttpGet(mUrl);
 try {
 // USE YOUR HTTP CLIENT TO EXECUTE THE METHOD
 response = httpClient.execute(getMethod);
 System.out.println("STATUS CODE: " +
 String.valueOf(response.getStatusLine().
 getStatusCode()));
 if (null != response) {
 // CONVERT HTTP RESPONSE TO STRING
 ret = getResponseBody(response);
 }
 } catch (Exception e) {
 System.out.println(e.getMessage());
 }

 return ret;
 }

public static String getResponseBody(HttpResponse response) {
 String response_text = null;
 HttpEntity entity = null;
 try {
 // GET THE MESSAGE BODY OF THE RESPONSE
 entity = response.getEntity();
 if (entity == null) { throw new
 IllegalArgumentException("HTTP entity may not be null"); }

Bringing it Together

[184]

 // IF NOT NULL GET CONTENT AS STREAM
 InputStream instream = entity.getContent();
 if (instream == null) { return ""; }

 // CHECK FOR LENGTH
 if (entity.getContentLength() > Integer.MAX_VALUE)
 { throw new IllegalArgumentException(
 "HTTP entity too large to be buffered in memory"); }

 // GET THE CHARACTER SET OF THE RESPONSE
 String charset = null;
 if (entity.getContentType() != null) {
 HeaderElement values[] = entity.getContentType().
 getElements();
 if (values.length > 0) {
 NameValuePair param = values[0].
 getParameterByName("charset");
 if (param != null) {
 charset = param.getValue();
 }
 }
 }
 if (charset == null) {
 charset = HTTP.DEFAULT_CONTENT_CHARSET;
 }

 // ONCE CHARSET IS OBTAINED - READ FROM STREAM
 Reader reader = new InputStreamReader(instream, charset);
 StringBuilder buffer = new StringBuilder();
 try {
 // USE A BUFFER TO READ FROM STREAM
 char[] tmp = new char[2048];
 int l;
 while ((l = reader.read(tmp)) != -1) {
 buffer.append(tmp, 0, l);
 }
 } finally {
 reader.close();
 }
 // CONVERT BUFFER TO STRING
 response_text = buffer.toString();
 } catch (Exception e) {
 e.printStackTrace();
 }
 return response_text;
 }
}

Chapter 10

[185]

At first glance this may all seem very intimidating, especially for someone who has
never seen any of these technologies or classes. Yes – there are a lot of new classes
involved, but none of this is rocket science; in fact, the class names are all pretty
intuitive and descriptive and there isn't too much going on beyond that.

In the first method, what we're doing is pretty simple. Java has an HttpGet class
that's included in the Android SDK as well as in the Java SDK, which then gets
instantiated with a URL. Next, we pass this HttpGet object into our HTTP client and
wait for the response to come back to us. The response will eventually come back
as an HttpResponse object, and within this object there are descriptive fields that
tell you the HTTP status code, the content of the response (this is what we'll need
shortly), and so on. The status code is a useful thing to have, as it will tell us whether
or not the GET request was successful, and, if not, what error it failed with. With
these different error codes at hand, we can then handle each event accordingly – for
instance, if the server is down, then we're out of luck and should either tell the user
to check back later or potentially direct them to an offline version of your application.
On the other hand, if it was just a temporary connection issue, then maybe we'll
silently make the request again.

Once we have the response and check that it succeeded, it's time to get the response
body! The code for that is in the next section – that is, the getResponseBody()
method. This method is a little more cumbersome, but hopefully the inline comments
help guide you through what's going on. From a high level, essentially what we're
doing is grabbing the content body of the HttpResponse object known in this case
as the entity. However, the entity is a separate object which contains numerous
descriptive fields, but what we're actually interested in is the string representation
of the HttpEntity object. Hence, from the HttpEntity we request an InputStream,
which will allow us to utilize a StringBuilder object and stream the characters of
the content body line by line. Now, the rest of the code in between is simply a series
of checks to make sure that there's actually a message to be buffered, and, if so, that
it's not too large for our buffer to handle (that is, it doesn't exceed the maximum size
of a string). Lastly, we just need to retrieve the content body's character set so that
our InputStreamReader will know which character set to use when converting the
message into characters.

Now, here's how we'll use the two previous classes to actually make the GET request
from the Android client side:

public class GetVideoGamesAndroid {

 private static String URL_BASE =
 "http://entertainmentapp.appspot.com";

 private static String REQUEST_BASE = "/getVideoGames?type=";

Bringing it Together

[186]

 // THIS RETRIEVES THE HTTP CLIENT CONFIGURED ABOVE
 private static DefaultHttpClient httpClient =
 ConnectionManager.getClient();

 // PASS IN THE PLATFORM YOU WANT I.E. XBOX, PS3, ETC
 public static List<VideoGame> getGamesByType(String type) {
 // CONSTRUCT GET REQUEST URL
 String url = URL_BASE + REQUEST_BASE + type;

 // XML RESPONSE AS A STRING GETS RETURNED
 String response = GetMethods.doGetWithResponse(url,
 httpClient);

 // RUN THROUGH SIMPLE XML PARSER
 List<VideoGame> games =
 ObjectParsers.parseGameResponse(response);
 return games;
 }

}

At this point you'll notice that the meat of what's happening is indeed in our
GetMethods class, and that once this class has been implemented, making GET
requests becomes quite simple: one only needs the URL. So then what does the
XML parser look like in this case? Well, you can implement it in any number of
ways, depending on how complicated the XML is and/or how familiar you are with
various XML document parsers. For extremely simple XML (that is, documents with
just a single layer of nodes), sometimes using simple REGEX commands will do the
trick. In more complex XML, sometimes it helps to use Java's built-in SAXParser
classes or to even use our buddy HtmlCleaner. Note that in many cases the data
returned might also be in JSON format, in which case you would need to write
some simple JSON parsers that take the various key-value pairs and reconstruct the
VideoGame objects on the mobile side.

Chapter 10

[187]

Because of all these previous dependencies, I'll leave the actual implementation of
the parseGameResponse() method to you guys – the goal is clear and if you need a
reminder of what the data looks like, just refer back to the first image of this chapter.
Now you just need to parse it, which should be a relatively simple exercise. One
last thing I'll mention is that typically these HTTP requests can take some time
(at least a couple of seconds, sometimes upwards of 10-20 depending on how much
work is being done on the server). Because of how the Android OS will throw an
"Application Not Responding" (ANR) error if the main UI thread gets held up for too
long (5-10 seconds depending on the condition), I would highly recommend making
all HTTP requests on separate threads. You can do this the traditional way using
Runnable and Handler classes, but Android also provides you with nice wrapper
classes like the AsyncTask class. I'd also encourage you to read this post made by
our friends at Google for more on designing responsive applications:

http://developer.android.com/guide/practices/design/responsiveness.
html

And so now, we've made our GET request, we've parsed the data, and we have
a nice list of VideoGame objects on the mobile side which are duplicates of the
VideoGame objects that came from our server. The only thing left to do is use
one of our ListAdapters which we saw earlier in the book and bind it to the UI!

Final steps: binding to the UI (again)
It's time for the last and final step – binding our data to the user interface. This
section should look very familiar for those who have gone through the entire
book, so I'll try to be brief but complete.

In the previous sections, we essentially hooked all the network requests together,
both on the application side as well as on the server side, so that now we should be
able to seamlessly make GET requests from any mobile application. We also looked
at ways in which we could parse the resulting response (again, this was left as an
exercise, as the response could come back in any number of ways) and convert the
data from string form back into VideoGame object form.

Bringing it Together

[188]

So now let's think back to Chapter 6, Binding to the UI. In that chapter, we looked
at two subclasses of ListAdapters – the BaseAdapter and the CursorAdapter.
As you'll recall, the CursorAdapter is used when our data is stored into a SQLite
database. The subsequent query into our SQLite database is returned in the form
of a Cursor object which then gets wrapped by the CursorAdapter class. In our
VideoGame example, we currently have a list of objects, not a Cursor. That's not to
say that we couldn't store our results into a SQLite database, effectively making a
cache (remember these?) on our application side and then issuing a query into our
cache to get back a Cursor. But, for simplicity, let's stick with our list of VideoGame
objects and simply use a BaseAdapter which is designed especially for such lists.
The code for it might look like the following:

public class VideoGameBaseAdpater extends BaseAdapter {

 // REMEMBER CONTEXT SO THAT CAN BE USED TO INFLATE VIEWS
 private LayoutInflater mInflater;

 // LIST OF VIDEO GAMES
 private List<VideoGame> mItems = new ArrayList<VideoGame>();

 public VideoGameBaseAdpater(Context context,
 List<VideoGame> items) {
 // HERE WE CACHE THE INFLATOR FOR EFFICIENCY
 mInflater = LayoutInflater.from(context);
 mItems = items;
 }

 public int getCount() {
 return mItems.size();
 }

 public Object getItem(int position) {
 return mItems.get(position);
 }

 public long getItemId(int position) {
 return position;
 }

 public View getView(int position, View convertView,
 ViewGroup parent) {
 VideoGameViewHolder holder;

Chapter 10

[189]

 // IF NULL THEN NEED TO INSTANTIATE IT BY INFLATING IT
 if (convertView == null) {
 convertView = mInflater.inflate(R.layout.list_entry,
 null);

 holder = new VideoGameViewHolder();
 holder.name_entry = (TextView) convertView.findViewById
 (R.id.name_entry);
 holder.type_entry = (TextView) convertView.findViewById
 (R.id.number_type_entry);

 convertView.setTag(holder);
 } else {
 // GET VIEW HOLDER BACK FOR FAST ACCESS TO FIELDS
 holder = (VideoGameViewHolder) convertView.getTag();
 }

 // EFFICIENTLY BIND DATA WITH HOLDER
 VideoGame v = mItems.get(position);
 holder.name_entry.setText(v.getName());

 String type = VideoGameConsole.convertIntToString
 (v.getConsoleType());
 holder.type_entry.setText(type);

 return convertView;
 }

 static class VideoGameViewHolder {
 TextView name_entry;

 TextView type_entry;
 }

}

So just like how in Chapter 6, Binding to the UI, we implemented a custom
BaseAdpater that created a list of Contact objects – in this case, we're doing
something extremely similar but for our VideoGame objects! Notice here that my
VideoGameViewHolder only displays the name of the game and the type of the
game and that I'm not doing anything with the image URL. Again, one could easily
incorporate this into each row through using an ImageView, but that would require
converting a URL into a Bitmap object – something that's not difficult to do but
unnecessary in our case; you get the idea by now.

Bringing it Together

[190]

Now that this is done, we simply need to create an Activity which makes the GET
request, takes the resulting list of VideoGames, and sets them as its ListAdapter by
using the custom VideoGameBaseAdapter. The code for this is extremely simple:

public class VideoGameBaseAdapterActivity extends ListActivity {

 private List<VideoGame> games;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.list);

 // MAKE GET REQUEST TO RETRIEVE GAMES
 games = GetVideoGamesAndroid.getGamesByType
 (VideoGameConsole.XBOX);

 // USE VIDEO GAME ADAPTER
 VideoGameBaseAdpater vAdapter = new VideoGameBaseAdpater(this,
 games);

 // SET THIS ADAPTER AS YOUR LIST ACTIVITY'S ADAPTER
 this.setListAdapter(vAdapter);
 }

 @Override
 protected void onListItemClick(ListView l, View v, int position,
 long id) {
 super.onListItemClick(l, v, position, id);
 VideoGame vg = games.get(position);

 String name = vg.getName();
 System.out.println("CLICKED ON " + name);
 }
}

Chapter 10

[191]

Once done, our end result looks like the following:

And voila! Pat yourself on the back, as we've now just finished our first full-scale
data-centric application! Now not only do we have a fully functional backend
equipped with its own set of HTTP requests, but we've also built the beginning of a
promising Android application that can make HTTP requests to this backend, obtain
the results, and display them in a simple list.

Bringing it Together

[192]

Summary
So, we've reached the end but before we part, let's take a look from start to finish
at all the incredible things we've learned and covered. We started this book by
looking at various local storage methods on Android – methods that were extremely
light-weight and efficient, as well as methods like the SQLite database, which were
more complex but at the same time much more powerful.

We then took a deeper look at the SQLite database – likely the most common form
of local data storage that you'll encounter in your Android application development
careers, before moving onto SQL queries in Chapter 3, SQLite Queries. Next, we
learned about ways in which we could expose our SQLite databases to external
applications through wrapping them in content providers. Then we took a look
at the most popular content provider on the Android OS – the Contacts content
provider, and implemented some common queries that one might encounter.

Once we had completely mastered local storage methods, we moved on to actually
binding these local data sources to the user interface through various ListAdapter
classes. It was in this chapter that we saw implementations and use cases of both the
CursorAdapter as well as the BaseAdapter.

From there we moved onto a more holistic look at data-centric application design
and programming. We talked about practical ways in which we could use all the
various forms of local data storage, and also introduced the notion of a cache as one
extremely practical use case for a SQLite database. This naturally transitioned us
into considering external databases, as caches typically go hand in hand with web
requests and web programming.

It was with external databases that we ended our book. We discussed different kinds
of external databases that we could use and decided to stick with Google App Engine
(GAE) for our sample implementation. It was with GAE that we implemented
a fully-functional JDO database (all done in the cloud), at which point we also
implemented a series of HTTP servlets that would allow us to make HTTP GET and
POST requests. And finally, we ended the book by implementing the code for the
mobile side of our application – bringing us full circle and back to Android.

It's my hope that through all this, we can better see how databases, both local and
external, fit into the grand scheme of developing powerful, data-centric Android
applications. Best of luck and happy developing.

Index
Symbols
<cronentries> tag 175
<cron> tags 175
<friends> tag 158
.mode MODE command 41
.output FILENAME command 41
.tables command 41

A
access speed 17
Activity class

about 109
ListActivity 110

addURI() 81
advanced SQLite schemas

creating 27-30
AGGREGATION_MODE_DEFAULT 97
AGGREGATION_MODE_DISABLED 97
AGGREGATION_MODE_SUSPENDED 97
Amazon's Elastic Compute Cloud. See EC2
Amazon's Relational Database Service. See

RDS
Amazon's Web Services. See AWS
AND/OR operators 51
Android

internal storage methods 13
need for 7

Android application's backend
designing 132-134

Android Debug Bridge (adb) 40
Android manifest 78
Apache Tomcat server 141
application design

steps 137, 138

ArrayAdapter 126
AsyncTask class 187
atomicity 104
AUTOINCREMENT property 21
AVG() aggregate function 61
AWS 143

B
BaseAdapter

about 118
comparing, with CursorAdapters 125, 126
example 124, 125

BaseAdapter class 119
batchInsertGames() method 173
bindView() method 114
buildUnionQuery() method 44

C
cache

about 134-136
working 135

CitizensTable class 74
CitizenTable class 88
clean() method 165
clear() method 9
Comma Separated Values. See CSV
commit() method 9
ContactBaseAdpater

implementing 122, 123
ContactEntry class 118
Contacts

modifying 102-106
querying 98-102

Contacts ContentProvider
structure 95-98

[194]

ContactViewHolder class 121, 122
ContentProvider

about 73-78
delete() method, implementing 82-86
getType() method, implementing 86-89
insert() method, implementing 89
interacting 90-92
practical use cases 92, 93
query() method, implementing 79-82
update() methods, implementing 82-86

ContentProvider class 73, 77, 95
ContentResolver class 89
ContentValues class 23, 104
COUNT() aggregate function 61
COUNT() function 59
cron 174
CRON jobs

scheduling 174, 175
cron.xml file 174
CSV 130
CursorAdapter class 114, 119
CursorAdapters

comparing, with BaseAdapter 125, 126
custom BaseAdapter 125
custom CursorAdapters 117

D
data

binding, to UI 187-191
database management system. See DBMS
databases

as cache 134-136
data-centric applications 136
data collection

ways 157, 158
data parsing 181-185

GET request, making from Android client
side 185, 186

data, retrieving
ListViews 109
SimpleCursorAdapters 109

DBMS 142
delete() method 37, 82, 85
DISTINCT clause 52, 53
div tag 166
doGet() method 171

E
EC2 143
entities 144
execSQL() method 24
Extensible Markup Languag. See XML
external databases

about 142, 143
Apache Tomcat 141
AWS 143
DBMS 142
EC2 143
GAE 143
HTTP servlet 142
JDO 143
MySQL 141
RDS 143
types 141

external storage methods 16-20

G
GAE

about 143, 177
video game example 145-148

getBoolean() methods 9
get() command 41
getExternalStorageState() method 18
getInt() method 24
get() method 24
GetMethods class 186
getObjectById() method 153, 155
get() query 43
getResponseBody() method 185
getSharedPreferences() method 8
getString() method 24
getStudentsByGradeForCourse() method 35
getType() method 88
getVideoGamesByConsole() method 173
getView() method 119, 121
getWritableDatabase() 148
Google's App Engine setup 144
Google's App Engine. See GAE
GQL 144
grabGamesWithTag() method 169
GROUPBY clauses 57, 58

[195]

groupBy group 35
GROUPBY statement 68

H
Handler class 187
HAVING filter 59
having group 35
HAVING parameter 60
HtmlCleaner

URL 161
HtmlCleaner class 165
HttpGet class 185
HTTP GET requests

implementing 177-181
HTTP requests

types, GET request 171
types, POST request 171

HttpResponse object 185
HttpServlet class 171
HTTP servlets

about 142
extending 171
extending, for GET/POST methods 170-174

I
img tag 166
InputStream 185
insert() method 24
internal storage methods

accessing 14-16

J
Java Database Connectivity. See JDBC
Java Data Object. See JDO
JavaScript Object Notation. See JSON
JDBC 142
JDO 143, 144
JSON 159

K
key-value pairs 8

L
LayoutInflater class 122
LayoutInflater object 116
LIMIT clause

about 54
LIMIT n 54
LIMIT n, m 54

limit parameter 35
ListActivity class 110
ListAdapters. See BaseAdapter
ListAdapters

CursorAdapter 188
GET BaseAdapter 188

ListAdapters class 109
list interactions

handling 123, 124
ListView tag 110
localized database

external databases 131
external SD cards 130
pros 132
SharedPreferences 130
SQLite databases 131
use cases 130

local SQLite databases 129
lookup key 98

M
method

clear() 9
commit() 9
delete() 37
execSQL() 24
get() 9, 24
getExternalStorageState() 18
getSharedPreferences() 8
getString() 24
getStringSet() 13
getStudentsByGradeForCourse() 35
insert() 24
onCreate() 8, 21
onUpgrade() 22, 30
openFileOutput() 14, 18
put() 9

[196]

query() 37
read() 16
remove() 9

MIME 88
ModelBase class 146
MODE_MULTI_PROCESS mode 9
MODE_WORD_WRITEABLE mode 9
MODE_WORLD_READABLE mode 9
Multipurpose Internet Mail Extensions.

See MIME
MySQL 141

N
newQuery() method 152
newView() method 114

O
onCreate() method 8, 21, 22, 30, 77, 79, 81
onListItemClick() method 123
onUpdate() method 77
onUpgrade() method 22, 30
openFileOutput() method 18
ORDER BY clauses 55-59
orderBy group 35

P
parseGameResponse() method 187
permissions

setting 107
PersistenceManager 148-157
practical use cases 92, 93
put() methods 9

Q
queries 148
query() method 37, 44, 53, 64, 77, 79, 81
Quick Search widget 93

R
rawQuery() method 43
RDS 143
regular expressions (REGEX) 159
relational databases 20

remove() method 9
Runnable class 187

S
SAXParser classes 186
SchemaHelper class 30
Secure Digital (SD) 16
SELECT * FROM table_name command 41
SELECT * FROM table_name WHERE col =

'value' command 41
SELECT statements

about 45-49
results, validating 47-49

setTables() method 65
SharedPreferences

about 8
use cases 10
using, example 8-10

SharedPreferences class 73
SimpleCursorAdapter 109, 112, 116
SQL

about 20
COUNT() function 59
DISTINCT clause 52
GROUPBY clauses 57, 58
LIMIT clause 54
ORDER BY clauses 55-59
OR operator 51

SQLite 20
SQLite database

about 27
debugging 40-42
instantiating 20-24
wrappers 30-40

SQLiteDatabase class 24, 44
SQLiteOpenHelper class 21, 27, 75, 95, 148
SQLite queries

building, methods 43-45
SQLiteQueryBuilder class 44, 47, 50, 52,

65, 150
SQL language performance

checking 66-70
startManagingCursor() method 92
storage space 16
Structured Query Language. See SQL
SUM() aggregate function 61

[197]

T
TagNode objects 169

U
UI

data, binding to 187-191
Uniform Resource Identifier. See URI
UNION SQL query 47
update() method 82, 86
URI 74
use cases, SharedPreferences

application's state, remembering 12
application update, checking 11
first time visit, checking 10
login username, remembering 12
user's location, caching 12, 13

V
VideoGameBaseAdapter 190

W
web scraping 158-160, 170
web.xml file 174
WHERE filter 49, 86
Wi-Fi only filter 135
wrappers

for SQLite database 30-40

X
XML 158
XPath 161

Thank you for buying
Android Database Programming

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Android 3.0 Animations:
Beginner's Guide
ISBN: 978-1-84951-528-3 Paperback: 304 pages

Bring your Android applications to life with
stunning animations

1. The first and only book dedicated to creating
animations for Android apps.

2. Covers all of the commonly used animation
techniques for Android 3.0 and lower versions.

3. Create stunning animations to give your Android
apps a fun and intuitive user experience.

4. A step-by-step guide for learning animation
by building fun example applications
and games.

Android 3.0 Application
Development Cookbook
ISBN: 978-1-84951-294-7 Paperback: 272 pages

Over 70 working recipes covering every aspect of
Android development

1. Written for Android 3.0 but also applicable to
lower versions

2. Quickly develop applications that take
advantage of the very latest mobile
technologies, including web apps, sensors,
and touch screens

3. Part of Packt's Cookbook series: Discover tips
and tricks for varied and imaginative uses of
the latest Android features

Please check www.PacktPub.com for information on our titles

Android User Interface
Development: Beginner's Guide
ISBN: 978-1-84951-448-4 Paperback: 304 pages

Quickly design and develop compelling user
interfaces for your Android applications

1. Leverage the Android platform's flexibility and
power to design impactful user-interfaces

2. Build compelling, user-friendly applications
that will look great on any Android device

3. Make your application stand out from the rest
with styles and themes

4. A practical Beginner's Guide to take you
step-by-step through the process of developing
user interfaces to get your applications noticed!

Android Application
Testing Guide
ISBN: 978-1-84951-350-0 Paperback: 332 pages

Build intensively tested and bug free
Android applications

1. The first and only book that focuses on testing
Android applications

2. Step-by-step approach clearly explaining the
most efficient testing methodologies

3. Real world examples with practical test cases
that you can reuse

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Storing Data on Android
	Using SharedPreferences
	Common use cases for SharedPreferences
	Checking if it's the user's first time visit to
your application
	Checking when the application last updated itself
	Remembering what the user's login username was
	Remembering an application's state
	Caching a user's location

	Internal storage methods
	External storage methods
	SQLite databases
	Summary

	Chapter 2: Using a SQLite Database
	Creating advanced SQLite schemas
	Wrappers for your SQLite database
	Debugging your SQLite database
	Summary

	Chapter 3: SQLite Queries
	Methods for building SQLite queries
	SELECT statements
	WHERE filters and SQL operators
	DISTINCT and LIMIT clauses
	ORDER BY and GROUP BY clauses
	HAVING filters and Aggregate functions
	SQL vs. Java performance comparisons
	Summary

	Chapter 4: Using Content Providers
	ContentProvider
	Implementing the query method
	Implementing the delete and update methods
	Implementing the insert and getType methods
	Interacting with a ContentProvider

	Practical use cases
	Summary

	Chapter 5: Querying the Contacts Table
	Structure of the Contacts content provider
	Querying for Contacts
	Modifying Contacts
	Setting permissions
	Summary

	Chapter 6: Binding to the UI
	SimpleCursorAdapters and ListViews
	Custom CursorAdapters
	BaseAdapters and Custom BaseAdapters
	Handling list interactions
	Comparing CursorAdapters and BaseAdapters
	Summary

	Chapter 7: Android Databases
in Practice
	Local database use cases
	Databases as caches
	Typical application design
	Summary

	Chapter 8: Exploring External Databases
	Different external databases
	Google App Engine and JDO databases
	GAE: an example with video games
	The PersistenceManager and Queries
	Summary

	Chapter 9: Collecting and Storing Data
	Methods for Collecting Data
	A primer on web scraping
	Extending HTTP servlets for
GET/POST methods
	Scheduling CRON jobs
	Summary

	Chapter 10: Bringing it Together
	Implementing HTTP GET requests
	Back to Android: parsing responses
	Final steps: binding to the UI (again)
	Summary

	Index

